![2021-2022学年鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12734299/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12734299/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年鲁教版(五四制)六年级数学下册第五章基本平面图形定向练习试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12734299/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共23页。试卷主要包含了如图所示,由A到B有①等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )A.②③④ B.①②④ C.③④ D.①2、如果线段,,那么下面说法中正确的是( )A.点在线段上 B.点在直线上C.点在直线外 D.点可能在直线上,也可能在直线外3、已知,则∠A的补角等于( )A. B. C. D.4、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )A.2 B.2.5 C.3 D.3.55、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )A. B.C.或 D.或6、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )A.两点确定一条直线 B.两点之间,线段最短C.两点之间,直线最短 D.线段比直线短7、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A.两点之间线段最短 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离8、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )A.两点之间,线段最短 B.垂线段最短C.经过一点有无数条直线 D.两点确定一条直线9、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段10、用度、分,秒表示22.45°为( )A.22°45′ B.22°30′ C.22°27′ D.22°20′第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是直线上的一点,和互余,平分,若,则的度数为__________.(用含的代数式表示)2、如图,点C是线段上任意一点(不与端点重合),点M是中点,点P是中点,点Q是中点,则下列说法:①;②;③;④.其中正确的是_______.3、如图,C是线段AB上一点,D是线段CB的中点,,.若点E在线段AB上,且,则______.4、如图,延长线段AB到C,使BC=AB,D为线段AC的中点,若DC=3,则AB=______.5、如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1,得到线段P1Q1,则线段P1Q1=_____;再分别取线段AP1和AQ1的中点P2,Q2,得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3,得到线段P3Q3;连续这样操作2021次,则每次的两个中点所形成的所有线段之和P1Q1+P2Q2+P3Q3+…+P2021Q2021=_____.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:-12+(-3)2(2)一个角是它的余角的两倍,求这个角2、如图,、两点把线段分成三部分,,为的中点.(1)判断线段与的大小关系,说明理由.(2)若,求的长.3、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)(1)当t=2时,∠MON=_______,∠AON=_______;(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?4、如图,射线表示的方向是北偏东,射线表示的方向是北偏东,已知图中.(1)求∠AOB的度数;(2)写出射线OC的方向.5、如图,,是的平分线,是的平分线.(1)若,求的度数;(2)若与互补,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据直线的表示方法,平角,补角,线段的性质逐个判断即可.【详解】①直线AB和直线BA是同一条直线,正确②平角等于180°,正确③一个角是70°39',它的补角应为:,所以错误④两点之间线段最短,正确故选B【点睛】本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.2、D【解析】【分析】根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.【详解】解:∵,MA+MB=13cm,∴点可能在直线上,也可能在直线外,故选:D.【点睛】此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.3、C【解析】【分析】若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.【详解】解: , ∠A的补角为: 故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.4、C【解析】【分析】由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.【详解】解:∵,,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴,∴BD=AD-AB=9-6=3,故选:C.【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.5、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.6、B【解析】【分析】由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.【详解】解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是两点之间,线段最短.故选:B【点睛】本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.7、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.8、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.9、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.10、C【解析】【分析】将化成即可得.【详解】解:∵,∴,故选:C.【点睛】题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.二、填空题1、2m【解析】【分析】根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.【详解】解:∵和互余,∴+=90°,∴∠DOC=90°,∵,∴∠COE=90°-m,∵平分,∴∠BOC=2∠COE=180°-2m,∴=180°-∠BOC=2m,故答案为:2m.【点睛】此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.2、①②④【解析】【分析】根据线段中点的定义得到,,,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M是中点,∴,∵P是中点,∴,∵点Q是中点,∴,对于①:,故①正确;对于②:,,故②正确;对于③:,而,故③错误;对于④:,,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3、4或8##8或4【解析】【分析】先分别求出BD、BC的长度,再分点E在点C的左边和点E在点C的右边求解即可.【详解】解:∵AB=10,AD=7,∴BD=AB-AD=10-7=3,∵D为CB的中点,∴BC=2BD=6,当点E在点C的左边时,如图1,∵CE=2,∴BE=BC+CE=6+2=8;当点E在点C的右边时,如图2,则BE=BC-CE=6-2=4,综上,BE=4或8,故答案为:4或8.【点睛】本题考查线段的和与差、线段的中点,熟练掌握线段的运算,利用分类讨论思想求解是解答的关键.4、4【解析】【分析】根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC就得AB的长度【详解】解:由D为AC的中点,得AC=2DC=2×3=6又∵BC=AB,AC=AB+BC.∴ BC=AC=×6=2由线段的和差关系,得AB=AC-BC=6-2=4故答案为:4.【点睛】本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.5、 5 【解析】【分析】根据线段中点定义分别求出,据此得到规律代入计算即可.【详解】解:∵线段AP和AQ的中点为P1,Q1,∴,∵AP>AQ,∴P1Q1==5;∵线段AP1和AQ1的中点为P2,Q2,∴,∴,同理:,,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021= =设①,则②,①-②得,∴,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=,故答案为:5,.【点睛】此题考查了数轴上两点之间的距离公式,线段中点的定义,有理数的混合运算,规律的总结与计算,根据线段中点定义列得规律是解题的关键.三、解答题1、(1)-3;(2)这个角的度数为60°.【解析】【分析】(1)先计算乘方,再计算加减即可;(2)设这个角的度数为x,然后根据题意列出方程,解方程即可.【详解】解:(1)-12+(-3)2;(2)设这个角的度数为x,则它的余角为90°-x,由题可得:,解得:x=60°,答:这个角的度数为60°.【点睛】本题考查了余角,有理数的混合运算,熟练掌握余角的意义是解题的关键.2、 (1),见解析(2)50【解析】【分析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1).理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2 x=10,解得x=5,∴AD=10x=50cm.【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.3、 (1)144°,66°(2)秒或10秒(3)当0<t<时,的值是1;当<t<6时,的值不是定值【解析】【分析】(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.(1)由题意得:当t=2时,∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,∠AON=∠AOD-∠DON=90°-24°=66°,故答案为:144°,66°;(2)当ON与OA重合时,t=90÷12=7.5(s)当OM与OA重合时,t=180°÷15=12(s)如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=,②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,综上,t的值为秒或10秒;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90+12t=180,解得t=,如图所示,①当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴(定值),②当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,,∴(不是定值).综上所述,当0<t<时,的值是1;当<t<6时,的值不是定值.【点睛】本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.4、 (1)(2)北偏西【解析】【分析】(1)根据方向角的定义,结合图形中角的和差关系得出答案;(2)根据角的和差关系求出即可.(1)解:如图,射线表示的方向是北偏东,即,射线表示的方向是北偏东,即,,即;(2)解:,,,,,射线的方向为北偏西.【点睛】本题考查方向角,解题的关键是理解方向角的定义以及角的和差关系.5、 (1)50°(2)60°
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共25页。试卷主要包含了下列两个生活,图中共有线段等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共21页。试卷主要包含了已知,则∠A的补角等于等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共25页。试卷主要包含了下列说法,如图,点在直线上,平分,,,则等内容,欢迎下载使用。