数学六年级下册第五章 基本平面图形综合与测试复习练习题
展开
这是一份数学六年级下册第五章 基本平面图形综合与测试复习练习题,共23页。试卷主要包含了图中共有线段,下列命题中,正确的有等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A.两点之间线段最短 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离2、如图,OM平分,,,则( )A.96° B.108° C.120° D.144°3、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )A.340° B.350° C.360° D.370°4、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向5、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④6、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.7、图中共有线段( )A.3条 B.4条 C.5条 D.6条8、下列命题中,正确的有( )①两点之间线段最短; ②角的大小与角的两边的长短无关;③射线是直线的一部分,所以射线比直线短.A.0个 B.1个 C.2个 D.3个9、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )A.②③ B.①④ C.①③④ D.①②③10、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知A、B、C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF等于___.2、修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.3、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.4、的余角等于__________.5、=_____度,90°﹣=___° __.三、解答题(5小题,每小题10分,共计50分)1、已知:点C、D、E在直线AB上,且点D是线段AC的中点,点E是线段DB的中点,若点C在线段EB上,且DB=6,CE=1,求线段AB的长.2、课上,老师提出问题:如图,点O是线段上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;思路方法解答过程知识要素未知线段已知线段……因为C,D分别是线段AO,BO的中点,所以CO=AO,DO= .因为AB=10,所以CD=CO+DO=AO+ = = .线段中点的定义线段的和、差等式的性质 (2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.3、如图,将两块三角板的直角顶点重合.(1)写出以C为顶点相等的角;(2)若∠ACB=150°,求∠DCE的度数.4、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发,在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.(1)若AP=PB,①当动点C,D运动了2s时,AC+PD= cm;②当C,D两点间的距离为5cm时,则运动的时间为 s;(2)当点C,D在运动时,总有PD=2AC,①求AP的长度;②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.5、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)(1)若,当点运动了,求的值;(2)若点运动时,总有,试说明;(3)如图2,已知,是线段所在直线上一点,且,求的值. -参考答案-一、单选题1、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.2、B【解析】【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.3、B【解析】【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD,然后根据,的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC∵,的度数是一个正整数,∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则=,不符合题意;D、当3∠AOD+∠BOC=370°时,则=,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.4、B【解析】【分析】根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.【详解】A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确; B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确; D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.故选B.【点睛】本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.5、B【解析】【分析】先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.【详解】解:根据题意,画出图形,如图所示:设 ,则 ,∵点D是线段AC的中点,∴ ,∴ ,∴AB=BD,即点B是线段AD的中点,故①正确;∴BD=CD,故②正确;∴AB=CD,故③错误;∴ ,∴BC﹣AD=AB,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.6、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.7、D【解析】【分析】分别以为端点数线段,从而可得答案.【详解】解:图中线段有: 共6条,故选D【点睛】本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.8、C【解析】【分析】利用线段的性质、角的定义等知识分别判断后即可确定正确的选项.【详解】解:①两点之间线段最短,正确,符合题意;②角的大小与角的两边的长短无关,正确,符合题意;③射线是直线的一部分,射线和直线都无法测量长度,故错误,不符合题意,正确的有2个,故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解线段的性质、角的定义等知识,难度不大.9、B【解析】【分析】分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.【详解】解:①线段,AB的中点为D,则,故原判断正确;②射线没有长度,故原判断错误;③OB是的平分线,,则,故原判断错误;④把一个周角6等分,每份是60°,故原判断正确.故选:B【点睛】本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.10、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,号正方形,由两个等腰直角三角形组成,占整个正方形面积的.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.二、填空题1、6或15##15或6【解析】【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【详解】解:如图,当点B在线段AC上时,∵AB=21,BC=9,E、F分别为AB,BC的中点,∴EB=AB=10.5,BF=BC=4.5,∴EF=EB+FB=10.5+4.5=15;如图,当点C在线段AB上时,∴EF=EB-FB=10.5-4.5=6,故答案为:6或15.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.2、两点之间线段最短【解析】【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.3、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.4、【解析】【分析】根据和为90°的两个角互为余角解答即可.【详解】解:的余角等于90°-=,故答案为:.【点睛】本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.5、 【解析】【分析】根据角度的和差以及角度值进行化简计算即可【详解】解:90°﹣故答案为:【点睛】本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.三、解答题1、线段的长为10【解析】【分析】由题意知, ,,,将各值代入计算即可.【详解】解:∵点E是线段的中点,且∴∵∴∵点D是线段的中点∴ ∴.【点睛】本题考查了线段的中点.解题的关键在于正确的表示线段的数量关系.2、 (1)BO,BO,AB,5(2)不变,见解析【解析】【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=AO,DO=.因为AB=10,所以CD=CO+DO=AO+BO =AB=5.故答案为:BO,BO,AB,5(2)不会发生变化:理由如下:如图因为C,D分别是线段AO,BO的中点,所以,.因为,所以.【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.3、 (1)∠ACE=∠BCD,∠ACD=∠ECB(2)30°【解析】【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结论.(1)∵∠ACD=∠BCE=90°,∴∠ACE+∠DCE=∠BCD+∠DCE=90°,∴∠ACE=∠BCD;∠ACD=∠ECB=90°(2)∵∠ACB=150°,∠BCE=90°,∴∠ACE=150°-90°=60°.∴∠DCE=90°-∠ACE=90°-60°=30°【点睛】本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.4、 (1)①12;②4(2)①;②或【解析】【分析】(1)①先根据线段和差求出,再根据运动速度和时间求出的长,从而可得的长,由此即可得;②设运动时间为,先求出的取值范围,再求出当点重合时,,从而可得当时,点一定在点的右侧,然后根据建立方程,解方程即可得;(2)①设运动时间为,则,从而可得,再根据当在运动时,总有可得在点的运动过程中,点始终在线段上,此时满足,然后根据即可得出答案;②分点在线段上和点在的延长线上两种情况,分别根据线段和差即可得.(1)解:①,,当动点运动了时,,,,故答案为:12;②设运动时间为,点运动到点所需时间为,点运动到点所需时间为,则,由题意得:,则,当点重合时,,即,解得,所以当时,点一定在点的右侧,则,即,解得,即当两点间的距离为时,运动的时间为,故答案为:4.(2)解:①设运动时间为,则,,,当在运动时,总有,即总有,的值与点的位置无关,在点的运动过程中,点始终在线段上,此时满足,,又,,解得,答:的长度为;②由题意,分两种情况:(Ⅰ)当点在线段上时,,点在点的右侧,,,代入得:,解得;(Ⅱ)当点在的延长线上时,则,代入得:;综上,的长度为或.【点睛】本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.5、 (1)2cm(2)见解析(3)或【解析】【分析】(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;(2)根据题意可得出,.再由,可求出,从而可求出,即证明;(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.(1)∵时间时,,,∴;(2)∵,,又∵,∴,∴,∴,∴;(3)①如图,当点在线段上时,∵,∴,∴,∴; ②如图,当点在线段的延长线上时,∵,∴,∴, ③如图,当点在线段的延长线上时,,这种情况不可能,综上可知,的值为或.【点睛】本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共22页。试卷主要包含了在一幅七巧板中,有我们学过的,下列命题中,正确的有等内容,欢迎下载使用。
这是一份初中数学第五章 基本平面图形综合与测试同步达标检测题,共21页。试卷主要包含了下列说法中正确的是,已知,则∠A的补角等于,上午10等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共22页。试卷主要包含了在9,在数轴上,点M等内容,欢迎下载使用。