初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共21页。试卷主要包含了在9等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是( )A.CD=AC﹣DB B.BD+AC=2BC﹣CDC.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD2、用度、分,秒表示22.45°为( )A.22°45′ B.22°30′ C.22°27′ D.22°20′3、下列图形中,能用,,三种方法表示同一个角的是( )A. B.C. D.4、如图,C为线段上一点,点D为的中点,且,.则的长为( ).A.18 B.18.5 C.20 D.20.55、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A.两点之间线段最短 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离6、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).A.3组 B.4组 C.5组 D.6组7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )A. B. C. D.8、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A. B. C. D.9、平面上有三个点A,B,C,如果,,,则( )A.点C在线段AB的延长线上 B.点C在线段AB上C.点C在直线AB外 D.不能确定10、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )A.27° B.33° C.28° D.63°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线CD经过点O,若OC平分∠AOB,则,依据是______.2、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.3、若∠A=,则∠A的补角为__________.4、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.5、如果∠A=34°,那么∠A的余角的度数为_____°.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点C是线段AB的中点,点D在线段BC上.且CD=BD,点E是线段AD的中点.若CD=4.求线段CE的长.2、(1)如图1,已知线段a、b(),用无刻度的直尺和圆规画一条线段MN,使它等于(保留作图痕迹,不要求写作法).(2)如图2,已知点C在线段AB上,其中,,点E是AC的中点,点F在线段CB上,且,求线段EF的长度.3、已知,,,分别平分,.(1)如图1,当,重合时, 度;(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.①如图2,用等式表示与之间的数量关系,并说明理由;②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.4、如图,将两块三角板的直角顶点重合.(1)写出以C为顶点相等的角;(2)若∠ACB=150°,求∠DCE的度数.5、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数. -参考答案-一、单选题1、D【解析】【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,∴CD=BC﹣BD=AB﹣BD=AC﹣BD;∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.2、C【解析】【分析】将化成即可得.【详解】解:∵,∴,故选:C.【点睛】题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.3、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A选项中,可用,,三种方法表示同一个角;B选项中,能用表示,不能用表示;C选项中,点A、O、B在一条直线上,∴能用表示,不能用表示;D选项中,能用表示,不能用表示;故选:A.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.4、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.5、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.6、C【解析】【分析】利用网格作图即可.【详解】如图:在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,故选:C【点睛】此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.7、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.8、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.9、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.10、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.二、填空题1、等角的补角相等【解析】【分析】根据角平分线的定义和等角的补角相等解答即可.【详解】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC+∠AOD=180°,∠BOC+∠BOD=180°,∴∠AOD=∠BOD(等角的补角相等),故答案为:等角的补角相等.【点睛】本题考查角平分线的定义、补角,熟知等角的补角相等是解答的关键.2、 5 78.5【解析】【分析】设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.【详解】解:设圆的半径为,由题意得:,解得,则圆的面积为,故答案为:5,78.5.【点睛】本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.3、127°30′18″【解析】【分析】根据补角的定义,用180°减去的度数即可求解.【详解】的补角等于:.故答案是:.【点睛】考查了补角的定义,掌握两个角互为补角,就是两个角的和是180°是解答本题的关键.4、165°【解析】【分析】由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.【详解】解:如图,∵∠C=30°,∴∠BAC=45°-30°=15°,∴∠1=180°-∠BAC=165°,故答案为:165°.【点睛】此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.5、56【解析】【分析】根据余角的定义即可求得.【详解】解:∠A的余角为90°−∠A=90°−34°=56°故答案为:56【点睛】本题考查了余角的定义,掌握余角的定义是关键,这是基础题.三、解答题1、线段CE的长6.【解析】【分析】根据线段的和差,线段中点的性质,可得答案.【详解】解:因为点D在线段BC上,点C是线段AB的中点,点E是线段AD的中点,∵CD=4,CD=BD,∴BD=3CD=3×4=12,∴BC=CD+BD=4+12=16,∵点C是线段AB的中点,∴AC=BC=16,∵AD=AC+CD=16+4=20,∵点E是线段AD的中点.∴DE=AD=×20=10,CE=DE-CD=10-4=6.答:线段CE的长6.【点睛】本题考查了两点间的距离,利用线段和差、线段中点的性质是解题关键.2、(1)见解析;(2)4cm【解析】【分析】(1)先画一条射线AP,依次截取AB=BN=a,AM=b,即可得到所求作的线段;(2)利用,,求出AB,根据点E是AC的中点,分别求出CE、CF的长,相加即可得到线段EF的长度.【详解】解:(1)线段MN即为所求作的线段;(2)∵,,∴AB=AC+BC=10cm,∵点E是AC的中点,∴,∵,∴∴EF=CE+CF=4cm.【点睛】此题考查了线段的和差作图,线段中点的有关计算,正确掌握作线段等于已知线段的方法及线段中点的定义是解题的关键.3、 (1)(2)①;②时,;时,【解析】【分析】(1)由题意得出,,由角平分线定义得出,,即可得出答案;(2)①由角平分线定义得出,,求出,即可得出答案;②由①得,,当时,求出,,即可得出答案;当时,求出,,即可得出答案.(1),重合,,,平分,平分,,,;(2)①;理由如下:平分,平分,,,,;②由①得:,,当时,如图2所示:,,,∴当时,如图3所示:,,;∴综上所述,时,;时,【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.4、 (1)∠ACE=∠BCD,∠ACD=∠ECB(2)30°【解析】【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结论.(1)∵∠ACD=∠BCE=90°,∴∠ACE+∠DCE=∠BCD+∠DCE=90°,∴∠ACE=∠BCD;∠ACD=∠ECB=90°(2)∵∠ACB=150°,∠BCE=90°,∴∠ACE=150°-90°=60°.∴∠DCE=90°-∠ACE=90°-60°=30°【点睛】本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.5、(1)BD=1;(2)∠COB=20°【解析】【分析】(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.【详解】解:(1)∵AB=BC,BC=6,∴AB=×6=4,∴AC=AB+BC=10,∵点D是线段AC的中点,∴AD=AC=5,∴BD=AD-AB=5-4=1;(2)∵OB平分∠AOD,∠AOD=100°,∴∠AOB=∠AOD=50°,∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,∴∠AOC+∠AOC=50°,∴∠AOC=30°,∴∠BOC=∠AOC=20°.【点睛】本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法中正确的是,下列四个说法等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀综合训练题,共23页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
这是一份初中鲁教版 (五四制)第五章 基本平面图形综合与测试精品习题,共25页。试卷主要包含了已知线段AB,在数轴上,点M等内容,欢迎下载使用。