![2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测试试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12734407/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测试试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12734407/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测试试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12734407/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题,共26页。试卷主要包含了图中共有线段,如图,射线OA所表示的方向是,如图,下列说法不正确的是,如图所示,点E等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cmB.36cmC.4cm或36cmD.4cm或2cm
2、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线B.经过一点有无数条直线
C.两点之间,线段最短D.一条线段等于已知线段
3、在一幅七巧板中,有我们学过的( )
A.8个锐角,6个直角,2个钝角B.12个锐角,9个直角,2个钝角
C.8个锐角,10个直角,2个钝角D.6个锐角,8个直角,2个钝角
4、图中共有线段( )
A.3条B.4条C.5条D.6条
5、如图,射线OA所表示的方向是( )
A.西偏南30°B.西偏南60°C.南偏西30°D.南偏西60°
6、如图,下列说法不正确的是( )
A.直线m与直线n相交于点DB.点A在直线n上
C.DA+DB<CA+CBD.直线m上共有两点
7、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3B.4C.6D.8
8、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340°B.350°C.360°D.370°
9、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A.B.C.D.
10、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、90°-32°51′18″=______________.
2、已知点C,D在直线AB上,且,若,则CD的长为______.
3、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.
4、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.
5、已知点C是线段AB的三等分点,点D是线段AC的中点.若线段,则______.
三、解答题(5小题,每小题10分,共计50分)
1、如图甲,已知线段,,线段CD在线段AB上运动,E,F分别是AC,BD的中点.
(1)若,则______;
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由;
(3)①对于角,也有和线段类似的规律.如图乙,已知在内部转动,OE,OF分别平分和,若,,求;
②请你猜想,和会有怎样的数量关系,直接写出你的结论.
2、已知:点C、D、E在直线AB上,且点D是线段AC的中点,点E是线段DB的中点,若点C在线段EB上,且DB=6,CE=1,求线段AB的长.
3、已知线段(如图),C是AB反向延长线上的点,且,D为线段BC的中点.
(1)将CD的长用含a的代数式表示为________;
(2)若,求a的值.
4、已知,,,分别平分,.
(1)如图1,当,重合时, 度;
(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.
①如图2,用等式表示与之间的数量关系,并说明理由;
②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.
5、如图,O为直线AB上一点,与互补,OM,ON分别是,的平分线.
(1)根据题意,补全下列说理过程:
∵与互补,
∴.
又___________=180°,
∴∠_________=∠_________.
(2)若,求的度数.
(3)若,则(用表示).
-参考答案-
一、单选题
1、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
2、C
【解析】
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
3、B
【解析】
【分析】
根据一副七巧板图形,查出锐角,直角和钝角的个数即可.
【详解】
5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,
在一幅七巧板中根据12个锐角,9个直角,2个钝角.
故选择B.
【点睛】
本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.
4、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
5、D
【解析】
【详解】
解:,
根据方位角的概念,射线表示的方向是南偏西60度.
故选:D.
【点睛】
本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
6、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
7、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
8、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
9、D
【解析】
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
10、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
二、填空题
1、
【解析】
【分析】
根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.
【详解】
解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″.
故答案为:57°8′42″.
【点睛】
本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.
2、3或7或11
【解析】
【分析】
分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.
【详解】
解:如图,当在线段上,
,,
如图,当在的左边,在线段上,
,,
如图,当在的左边,在的右边,
,,
故答案为:3或7或11
【点睛】
本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.
3、40
【解析】
【分析】
设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.
【详解】
解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,
由题意可知:180-x=3(90-x)-10,
解出:x=40,
故答案为:40.
【点睛】
本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.
4、35°##35度
【解析】
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
5、12或6##6或12
【解析】
【分析】
根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.
【详解】
解:如图,
∵点C是线段AB上的三等分点,
∴AB=3AC,
∵D是线段AC的中点,
∴AC=2AD=4,
∴AB=3×4=12;
如图,
∵D是线段AC的中点,
∴AC=2AD=4,
∵点C是线段AB上的三等分点,
∴BC=AC=2,AB=3BC,
∴AB=3AC=6,
则AB的长为12或6.
故答案为:12或6.
【点睛】
本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.
三、解答题
1、 (1)12
(2)不变;
(3)①90°;②
【解析】
【分析】
(1)根据线段中点推理表示EF的长度即可;
(2)根据,再根据中点进行推导即可;
(3)①根据再结合角平分线进行计算;
②由①可以得到结论.
(1)
∵E,F分别是AC,BD的中点,
∴EC=AC,DF=DB.
∴EC+DF=AC+DB= (AC+DB).
又∵AB=20cm,CD=4cm,
∴AC+DB=AB-CD=20-4=16(cm).
∴EC+DF= (AC+DB)=8(cm).
∴EF=EC+DF+CD=8+4=12(cm).
故答案为:12.
(2)
EF的长度不变.
(3)
①∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
②,理由如下:
∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
【点睛】
本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.
2、线段的长为10
【解析】
【分析】
由题意知, ,,,将各值代入计算即可.
【详解】
解:∵点E是线段的中点,且
∴
∵
∴
∵点D是线段的中点
∴
∴.
【点睛】
本题考查了线段的中点.解题的关键在于正确的表示线段的数量关系.
3、 (1)a
(2)9cm
【解析】
【分析】
(1)首先求出CB的长;然后根据D为线段BC的中点,求出CD的长即可.
(2)首先根据AD=3cm表示出CD;然后得到方程,求出a的值即可.
(1)
解:∵AB=a,AC=AB=a,
∴CB=a+a=a,
∵D为线段BC的中点,
∴CD=CB=a;
(2)
∵AC=a,AD=3cm,
∴CD=a+3,
∴a+3=a,
解得:a=9.
【点睛】
此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.
4、 (1)
(2)①;②时,;时,
【解析】
【分析】
(1)由题意得出,,由角平分线定义得出,,即可得出答案;
(2)①由角平分线定义得出,,求出,即可得出答案;
②由①得,,
当时,求出,,即可得出答案;
当时,求出,,即可得出答案.
(1)
,重合,
,,
平分,平分,
,,
;
(2)
①;理由如下:
平分,平分,
,,
,
;
②由①得:,,
当时,如图2所示:
,
,
,
∴
当时,如图3所示:
,
,
;
∴
综上所述,时,;时,
【点睛】
本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.
5、 (1)BOC; AOD;BOC;
(2)22°.
(3).
【解析】
【分析】
(1)根据与互补,得出.根据 BOC =180°,利用同角的补角性质得出∠AOD=∠BOC.
(2)根据OM是∠AOC的平分线.得出∠AOC=2∠MOC=2×68°=136°,根据∠AOC与∠AOD互补,求出∠AOD=180°﹣136°=44°,再根据ON是∠AOD的平分线.可得∠AON=∠AOD=22°.
(3)根据OM是∠AOC的平分线.得出∠AOC=2,根据∠AOC与∠AOD互补,可求∠AOD=180°﹣,根据ON是∠AOD的平分线.得出∠AON=∠AOD=.
(1)
解:∵与互补,
∴.
又 BOC =180°,
∴∠AOD=∠BOC.
故答案为:BOC; AOD;BOC;
(2)
解:∵OM是∠AOC的平分线.
∴∠AOC=2∠MOC=2×68°=136°,
∵∠AOC与∠AOD互补,
∴∠AOD=180°﹣136°=44°,
∵ON是∠AOD的平分线.
∴∠AON=∠AOD=22°.
(3)
解:∵OM是∠AOC的平分线.
∴∠AOC=2,
∵∠AOC与∠AOD互补,
∴∠AOD=180°﹣,
∵ON是∠AOD的平分线.
∴∠AON=∠AOD=.
【点睛】
本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.
相关试卷
这是一份2021学年第五章 基本平面图形综合与测试综合训练题,共25页。试卷主要包含了如图,点在直线上,平分,,,则,如图,射线OA所表示的方向是,下列说法正确的是,下列现象等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共25页。试卷主要包含了下列说法,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共23页。试卷主要包含了如图所示,由A到B有①等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)