鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业,共24页。试卷主要包含了如图所示,B,如图所示,由A到B有①等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )
A.4B.5C.10D.14
2、在一幅七巧板中,有我们学过的( )
A.8个锐角,6个直角,2个钝角B.12个锐角,9个直角,2个钝角
C.8个锐角,10个直角,2个钝角D.6个锐角,8个直角,2个钝角
3、钟表上1时30分时,时针与分针所成的角是( )
A.B.C.D.以上答案都不对
4、钟表10点30分时,时针与分针所成的角是( )
A.B.C.D.
5、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15B.17C.19D.20
6、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )
A.②③④B.①②④C.③④D.①
7、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对B.2对C.3对D.4对
8、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线B.经过一点有无数条直线
C.两点之间,线段最短D.一条线段等于已知线段
9、如图,线段,点在线段上,为的中点,且,则的长度( )
A.B.C.D.
10、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )
A.2B.4C.6D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.
2、如图,已知点O在直线AB上,OC⊥OD,∠BOD:∠AOC=3:2,那么∠BOD=___度.
3、如图,将一块直角三角板的直角顶点放在直尺的一边上,如果,那么______.
4、已知点C是线段AB的三等分点,点D是线段AC的中点.若线段,则______.
5、如图,在灯塔O处观测到轮船A位于北偏西53°的方向,同时轮船B在南偏东17°的方向,那么______°.
三、解答题(5小题,每小题10分,共计50分)
1、数轴上不重合两点A,B.
(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;
(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;
(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,
①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;
②当点O是线段AB的中点时,直接写出t的取值范围.
2、已知线段a、b(如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)
①画射线OP;
②在射线OP上顺次截取OA=a,AB=a;
③在线段OB上截取BC=b;
④作出线段OC的中点D.
(1)根据以上作图可知线段OC= ;(用含有a、b的式子表示)
(2)如果OD=2厘米,CD=2AC,那么线段BC= 厘米.
3、如图,是直线上一点,是直角,平分.
(1)若,则__________;
(2)若,求__________(用含的式子表示);
(3)在的内部有一条射线,满足,试确定与的度数之间的关系,并说明理由.
4、如图①.直线上有一点, 过点在直线上方作射线, 将一直角三角板(其中)的直角顶点放在点处, 一条直角边在射线 上, 另一边OA在直线DE的上方,将直角三角形绕着点O按每秒的速度顺时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到图②的伩置时, 射线恰好平分, 此时, 与 之间的数量关系为____________.
(2)若射线的位置保持不变, 且,
①在旋转过程中,是否存在某个时刻,使得射线, 射线, 射线中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出的值; 若不存在, 请说明理由;
②在旋转过程中, 当边与射线相交时, 如图③, 请直接写出的值____________.
5、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.
【详解】
∵AC:CD:DB=2:3:4,
∴设AC=2x,CD=3x,DB=4x,
∴AB=9x,
∵AB=18,
∴x=2,
∴AD=2x+3x=5x=10,
故选:C.
【点睛】
本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.
2、B
【解析】
【分析】
根据一副七巧板图形,查出锐角,直角和钝角的个数即可.
【详解】
5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,
在一幅七巧板中根据12个锐角,9个直角,2个钝角.
故选择B.
【点睛】
本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.
3、C
【解析】
【分析】
钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.
【详解】
解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,
钟表12个数字,每相邻两个数字之间的夹角为30°,
∴1点30分分针与时针的夹角是4.5×30°=135°.
故选:C.
【点睛】
本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.
4、B
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:10点30分时的时针和分针相距的份数是4.5,
10点30分时的时针和分针所成的角的度数为30°×4.5=135°,
故选:B.
【点睛】
本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.
5、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
6、B
【解析】
【分析】
根据直线的表示方法,平角,补角,线段的性质逐个判断即可.
【详解】
①直线AB和直线BA是同一条直线,正确
②平角等于180°,正确
③一个角是70°39',它的补角应为:,所以错误
④两点之间线段最短,正确
故选B
【点睛】
本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.
7、B
【解析】
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
8、C
【解析】
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
9、D
【解析】
【分析】
设cm,则cm,根据题意列出方程求解即可.
【详解】
解:设,则,
∵为的中点,
∴,
∴,
解得,
cm,
故选:D.
【点睛】
本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.
10、A
【解析】
【分析】
根据线段中点的定义计算即可.
【详解】
解:∵点C是线段AB的中点,
∴AC=,
又∵点D是线段AC的中点,
∴CD=,
故选:A.
【点睛】
本题考查了线段中点的定义,掌握线段中点的定义是关键.
二、填空题
1、 45° 127.5°
【解析】
【分析】
根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.
【详解】
解:根据题意:钟面上4时30分,时针与分针的夹角是 ;
15分钟后时针与分针的夹角是 .
故答案为:45°,127.5°
【点睛】
本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.
2、54
【解析】
【分析】
根据平角等于180°得到等式为:∠AOC+∠COD+∠DOB=180°,再由∠COD=90°,∠BOD:∠AOC=3:2即可求解.
【详解】
解:∵OC⊥OD,
∴∠COD=90°,
设∠BOD=3x,则∠AOC=2x,
由题意知:2x+90°+3x=180°,
解得:x=18°,
∴∠BOD=3x=54°,
故答案为:54°.
【点睛】
本题考查了平角的定义,属于基础题,计算过程中细心即可.
3、##25.2°
【解析】
【分析】
,由可以求出的值.
【详解】
解:
故答案为:(或).
【点睛】
本题考察了角度的转化.解题的关键在于明确.
4、12或6##6或12
【解析】
【分析】
根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.
【详解】
解:如图,
∵点C是线段AB上的三等分点,
∴AB=3AC,
∵D是线段AC的中点,
∴AC=2AD=4,
∴AB=3×4=12;
如图,
∵D是线段AC的中点,
∴AC=2AD=4,
∵点C是线段AB上的三等分点,
∴BC=AC=2,AB=3BC,
∴AB=3AC=6,
则AB的长为12或6.
故答案为:12或6.
【点睛】
本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.
5、144
【解析】
【分析】
先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.
【详解】
解:如图,
∵在灯塔O处观测到轮船A位于北偏西53°的方向,
∴∠AOC=53°,
∴∠AOD=90°-53°=37°,
∵轮船B在南偏东17°的方向,
∴∠EOB=17°,
∴∠AOB=37°+90°+17°=144°,
故答案为:144.
【点睛】
此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.
三、解答题
1、 (1)
(2)5
(3)①,;②且
【解析】
【分析】
(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;
(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;
(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;
②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.
(1)
解:∵点A表示的数为﹣3,点B表示的数为1,
∴AB=1-(-3)=1+3=4,
∵点M为AB中点,
∴AM=BM,
∴点M表示的数为:-3+2=-1,
故答案为:-1;
(2)
解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,
∴AN=1-(-3)=1+3=4,
∵点N为AB中点,
∴AB=2AN=2×4=8,
∴点B表示的数为:-3+8=5,
故答案为:5;
(3)
①点A表示的数为,
点C表示的数为,
故答案为:;;
②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,
∴-3+3t+t=5-(-3),
∴t=2,
当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,
∴t≠5,
当点B与点D重合时,点A运动到1,-5+t=1,
∴t=6,
∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.
【点睛】
本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.
2、 (1)作图见解答,
(2)6
【解析】
【分析】
利用基本作图画出对应的几何图形,(1)根据线段的和差得到;(2)先利用点为的中点得到厘米,则厘米,然后利用进行计算.
(1)
解:如图,
;
故答案为:;
(2)
解:点为的中点,
厘米,
,
厘米,
(厘米);
故答案为:6.
【点睛】
本题考查了作图复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
3、 (1)30°
(2)
(3)5∠DOE-7∠AOF=270°
【解析】
【分析】
(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;
(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;
(3)结合(2)把所给等式整理为只含所求角的关系式即可.
(1)
解:∵∠COD是直角,∠BOD=30°,
∴∠BOC=90°-∠BOD=60°,
∵OE平分∠BOC,
∴∠COE=30°,
(2)
∵,
∴,
∵OE平分∠BOC,
∴∠COE=∠BOE,
∵∠COD是直角,
∴∠DOE=90°-∠COE=,
(3)
∵
∴6∠AOF+3∠BOE=∠AOC-∠AOF,
∴7∠AOF+3∠BOE=∠AOC,
∵∠COD是直角,OE平分∠BOC,
∴∠BOE=90°-∠DOE,
由(2)可知,∠AOC=2∠DOE
∴7∠AOF+3(90°-∠DOE)=2∠DOE
∴7∠AOF+270°=5∠DOE,
∴5∠DOE-7∠AOF=270°.
【点睛】
本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.
4、 (1)
(2)①;②
【解析】
【分析】
(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;
(2)①存在,根据,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;
②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.
(1)
解:∵OB平分∠COE,
∴∠COB=∠EOB,
∵∠AOB=90°,
∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,
∴∠AOC=∠AOD,
故答案为:∠AOC=∠AOD;
(2)
解:①存在,
∵,
∴∠COE=180°-∠COD=180°-120°=60°,
当OB平分∠COE时,直角边在射线 上,
∠EOB=∠BOC=,
则15°t=30°,
∴t=2;
当OC平分∠EOB时,∠BOC=∠EOC=60°,
∴∠EOB=2∠EOC=120°>90°,
∴当OC平分∠EOB时,∠EOB不是锐角舍去,
当OE平分∠BOC时,∠EOB=∠EOC=60°,
∴∠BOC=2∠EOC=120°>90°,
当OE平分∠BOC时,∠BOC不是锐角舍去,
综上,所有满足题意的t的取值为2,
②如图∵∠COD=120°,
当AB与OD相交时,
∵∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,
∴,
故答案为:30°.
【点睛】
本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.
5、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
相关试卷
这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后复习题,共21页。试卷主要包含了下列两个生活,如图所示,B,如图,一副三角板等内容,欢迎下载使用。
这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试巩固练习,共20页。试卷主要包含了已知,则的补角的度数为,若,则的补角的度数为,如图,下列说法不正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共22页。试卷主要包含了已知线段AB,下列现象,图中共有线段,下列说法错误的是等内容,欢迎下载使用。