初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精练
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精练,共24页。试卷主要包含了如图,下列说法不正确的是,已知与满足,下列式子表示的角,下列现象,已知点C,在9等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点,为线段上两点,,且,设,则关于的方程的解是( )A. B. C. D.2、平面上有三个点A,B,C,如果,,,则( )A.点C在线段AB的延长线上 B.点C在线段AB上C.点C在直线AB外 D.不能确定3、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )A. B.C. D.4、如图,下列说法不正确的是( )A.直线m与直线n相交于点D B.点A在直线n上C.DA+DB<CA+CB D.直线m上共有两点5、一个角的度数为54°12',则这个角的补角度数等于( )A.125°48' B.125°88' C.135°48' D.136°48'6、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④7、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④8、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )A.4 B.5 C.10 D.149、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A. B. C. D.10、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.2、如图,在灯塔O处观测到轮船A位于北偏西53°的方向,同时轮船B在南偏东17°的方向,那么______°.3、式子的最小值是______.4、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.5、一种零件的图纸如图所示,若AB=10mm,BC=50mm,CD=20mm,则AD的长为 _____mm.三、解答题(5小题,每小题10分,共计50分)1、如图,O为直线AB上一点,与互补,OM,ON分别是,的平分线.(1)根据题意,补全下列说理过程:∵与互补,∴.又___________=180°,∴∠_________=∠_________.(2)若,求的度数.(3)若,则(用表示).2、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发,在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.(1)若AP=PB,①当动点C,D运动了2s时,AC+PD= cm;②当C,D两点间的距离为5cm时,则运动的时间为 s;(2)当点C,D在运动时,总有PD=2AC,①求AP的长度;②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.3、已知:点C、D、E在直线AB上,且点D是线段AC的中点,点E是线段DB的中点,若点C在线段EB上,且DB=6,CE=1,求线段AB的长.4、如图,O为直线AB上一点,,OD平分∠AOC,.(1)图中小于平角的角有______个.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.5、如图,C为线段AD上一点,B为CD的中点,,.(1)图中共有______条线段;(2)求AC的长;(3)若点E是线段AC中点,求BE的长.(4)若点F在线段AD上,且cm,求BF的长. -参考答案-一、单选题1、D【解析】【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.【详解】解:,,,,解得,则关于的方程为,解得,故选:D.【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.2、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.3、B【解析】【分析】先求解利用角平分线的定义再求解从而可得答案.【详解】解: 平分 故选B【点睛】本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.4、D【解析】【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.【详解】解:A、直线与直线相交于点,则此项说法正确,不符合题意;B、点在直线上,则此项说法正确,不符合题意;C、由两点之间线段最短得:,则此项说法正确,不符合题意;D、直线上有无数个点,则此项说法不正确,符合题意;故选:D.【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.5、A【解析】【分析】由计算求解即可.【详解】解:∵∴这个角的补角度数为故选A.【点睛】本题考查了补角.解题的关键在于明确.6、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.7、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.8、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.9、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.10、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.二、填空题1、165°【解析】【分析】由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.【详解】解:如图,∵∠C=30°,∴∠BAC=45°-30°=15°,∴∠1=180°-∠BAC=165°,故答案为:165°.【点睛】此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.2、144【解析】【分析】先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.【详解】解:如图,∵在灯塔O处观测到轮船A位于北偏西53°的方向,∴∠AOC=53°,∴∠AOD=90°-53°=37°,∵轮船B在南偏东17°的方向,∴∠EOB=17°,∴∠AOB=37°+90°+17°=144°,故答案为:144.【点睛】此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.3、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.4、67.5【解析】【分析】6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.【详解】解:∵6点45分时,分针指向9,时针在指向6与7之间,∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.故答案为:67.5.【点睛】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.5、80【解析】【分析】根据AD=AB+BC+CD即可得答案.【详解】解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).故答案为:80.【点睛】本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.三、解答题1、 (1)BOC; AOD;BOC;(2)22°.(3).【解析】【分析】(1)根据与互补,得出.根据 BOC =180°,利用同角的补角性质得出∠AOD=∠BOC.(2)根据OM是∠AOC的平分线.得出∠AOC=2∠MOC=2×68°=136°,根据∠AOC与∠AOD互补,求出∠AOD=180°﹣136°=44°,再根据ON是∠AOD的平分线.可得∠AON=∠AOD=22°.(3)根据OM是∠AOC的平分线.得出∠AOC=2,根据∠AOC与∠AOD互补,可求∠AOD=180°﹣,根据ON是∠AOD的平分线.得出∠AON=∠AOD=.(1)解:∵与互补,∴.又 BOC =180°,∴∠AOD=∠BOC.故答案为:BOC; AOD;BOC;(2)解:∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×68°=136°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣136°=44°,∵ON是∠AOD的平分线.∴∠AON=∠AOD=22°.(3)解:∵OM是∠AOC的平分线.∴∠AOC=2,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣,∵ON是∠AOD的平分线.∴∠AON=∠AOD=.【点睛】本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.2、 (1)①12;②4(2)①;②或【解析】【分析】(1)①先根据线段和差求出,再根据运动速度和时间求出的长,从而可得的长,由此即可得;②设运动时间为,先求出的取值范围,再求出当点重合时,,从而可得当时,点一定在点的右侧,然后根据建立方程,解方程即可得;(2)①设运动时间为,则,从而可得,再根据当在运动时,总有可得在点的运动过程中,点始终在线段上,此时满足,然后根据即可得出答案;②分点在线段上和点在的延长线上两种情况,分别根据线段和差即可得.(1)解:①,,当动点运动了时,,,,故答案为:12;②设运动时间为,点运动到点所需时间为,点运动到点所需时间为,则,由题意得:,则,当点重合时,,即,解得,所以当时,点一定在点的右侧,则,即,解得,即当两点间的距离为时,运动的时间为,故答案为:4.(2)解:①设运动时间为,则,,,当在运动时,总有,即总有,的值与点的位置无关,在点的运动过程中,点始终在线段上,此时满足,,又,,解得,答:的长度为;②由题意,分两种情况:(Ⅰ)当点在线段上时,,点在点的右侧,,,代入得:,解得;(Ⅱ)当点在的延长线上时,则,代入得:;综上,的长度为或.【点睛】本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.3、线段的长为10【解析】【分析】由题意知, ,,,将各值代入计算即可.【详解】解:∵点E是线段的中点,且∴∵∴∵点D是线段的中点∴ ∴.【点睛】本题考查了线段的中点.解题的关键在于正确的表示线段的数量关系.4、 (1)9(2)(3)见解析【解析】【分析】(1)分别以为始边计数数角,从而可得答案;(2)先求解 再求解 从而可得答案;(3)分别求解从而可得结论.(1)解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.所以图中小于平角的角共有9个.(2)解:因为,OD平分∠AOC,所以,又所以(3)解:因为,,所以又因为所以,所以OE平分∠BOC.【点睛】本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.5、 (1)6(2)8 cm(3)6 cm(4)5 cm或1 cm【解析】【分析】(1)根据线段的定义,写出所有线段即可;(2)根据为的中点可得,进而根据即可求解;(3)点E是线段AC中点,则,根据即可求解;(4)根据题意,根据点在点的左侧和右侧两种情形分类讨论,进而根据线段的和差关系求解即可.(1)解:图中的线段有共6条故答案为:6(2)为的中点, cm(3)点E是线段AC中点,则, cm(4)若点F在线段AD上,,则分两种情况讨论①当在点的左侧时, cm,BF cm,②当在点的右侧时, cm,BF【点睛】本题考查了线段的数量问题,线段的和差计算,线段中点的性质,数形结合是解题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共25页。试卷主要包含了下列两个生活,图中共有线段等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题,共23页。试卷主要包含了如图,D,下列命题中,正确的有等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共24页。试卷主要包含了如图所示,点E,在一幅七巧板中,有我们学过的,如图,射线OA所表示的方向是等内容,欢迎下载使用。