终身会员
搜索
    上传资料 赚现金

    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系综合测评练习题(无超纲)

    立即下载
    加入资料篮
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系综合测评练习题(无超纲)第1页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系综合测评练习题(无超纲)第2页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系综合测评练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试优秀练习

    展开

    这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀练习,共33页。试卷主要包含了如图,FA等内容,欢迎下载使用。


    九年级数学下册第二十九章直线与圆的位置关系综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是(  )
    A.相切 B.相交
    C.相离、相切或相离 D.相切或相交
    2、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    3、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )
    A.m=4 B.m=4 C.4≤m≤4 D.4≤m≤4
    4、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )

    A. B.2 C.2 D.3
    5、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )

    A.18° B.28° C.36° D.45°
    6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )

    A. B. C. D.
    7、如图,与的两边分别相切,其中OA边与⊙C相切于点P.若,,则OC的长为( )

    A.8 B. C. D.
    8、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    9、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )

    A. B.
    C.3 D.
    10、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )

    A.70° B.50° C.20° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.

    2、如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为_____.

    3、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.

    4、如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.

    5、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.

    (1)求证:AB是的切线;
    (2)若,,求的半径.
    2、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.
    3、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°

    (1)试说明:直线为⊙P的切线.
    (2)若∠B=30°,AD=2,求CD的长.
    4、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.

    (1)求证:PC是⊙O的切线;
    (2)求证:;
    (3)若,△ACD的面积为12,求PB的长.
    5、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.
    【详解】
    解:的半径为8,,
    点到直线的距离,
    直线与的位置关系是相切或相交.
    故选:D.
    【点睛】
    此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.
    2、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    3、D
    【解析】
    【分析】
    根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题
    【详解】
    解:如图,

    根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,
    根据折叠的性质可得,又则四边形是菱形,且

    设,则
    则当取得最大值时,取得最小值,即取得最小值,
    当取得最小值时,取得最大值,
    根据题意,当点于点重合时,四边形是正方形


    此时
    当点与点重合时,此时最小,





    故选D
    【点睛】
    本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.
    4、C
    【解析】
    【分析】
    根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
    【详解】
    解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
    则:、、,,
    ∵∠F=60°,
    ∴为等边三角形,,
    ∵△FDE的周长为12,即,
    ∴,即,
    作,如下图:

    则,,
    ∴,
    设,则,由勾股定理可得:,
    解得,,
    故选C
    【点睛】
    此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
    5、A
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
    【详解】
    解:如图,连接




    是的切线


    故选A
    【点睛】
    本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
    6、B
    【解析】
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,

    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    7、C
    【解析】
    【分析】
    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
    【详解】
    解:如图所示,连接CP,
    ∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
    ∴∠CPO=90°,∠COP=45°,
    ∴∠PCO=∠COP=45°,
    ∴CP=OP=4,
    ∴,
    故选C.

    【点睛】
    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
    8、B
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选:B.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    9、C
    【解析】
    【分析】
    连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.
    【详解】
    解:如图,连接OA,OB,则OA=OB,

    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∵正方形ABCD的面积是18,
    ∴,
    ∴,即:

    故选C.
    【点睛】
    本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
    10、D
    【解析】
    【分析】
    首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
    【详解】
    解:连接OA,OB,

    ∵PA,PB为⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∵∠ACB=70°,
    ∴∠AOB=2∠P=140°,
    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
    故选:D.
    【点睛】
    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
    二、填空题
    1、
    【解析】
    【分析】
    如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.
    【详解】
    解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,
    则OD⊥MN,
    ∴MD=DN,
    在Rt△ODM中,OM=180cm,OD=60cm,
    ∴cm,
    ∴cm,
    即该球在大圆内滑行的路径MN的长度为cm,
    故答案为:.

    【点睛】
    本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.
    2、45°##45度
    【解析】
    【分析】
    连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.
    【详解】
    解:连接OB、OC,

    ∵四边形ABCD是正方形,
    ∴∠BOC=90°,
    ∴∠BPC=,
    故答案为:45°.
    【点睛】
    此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.
    3、或
    【解析】
    【分析】
    如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
    【详解】
    解:如图,连接 (即)分别在优弧与劣弧上,

    PM,PN分别与⊙O相切于A,B两点,




    故答案为:或
    【点睛】
    本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
    4、##
    【解析】
    【分析】
    连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF
    【详解】
    解:连接OC,

    ∵AB是圆的直径,







    ∴,即OC⊥CD
    ∵的半径为


    在Rt△OCD中,


    过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,

    ∴,解得,
    同理:


    故答案为:
    【点睛】
    本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.
    5、15##十五
    【解析】
    【分析】
    根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
    【详解】
    解:如图,设正多边形的外接圆为⊙O,连接OA,OB,

    ∵∠ADB=12°,
    ∴∠AOB=2∠ADB=24°,
    而360°÷24°=15,
    ∴这个正多边形为正十五边形,
    故答案为:15.
    【点睛】
    本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
    三、解答题
    1、 (1)见解析
    (2)2.4.
    【解析】
    【分析】
    (1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
    (2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
    (1)
    如图所示:过O作OD⊥AB交AB于点D.

    ∵OC⊥BC,且BO平分∠ABC,
    ∴OD=OC,
    ∵OC是圆O的半径
    ∴AB与圆O相切.
    (2)
    设圆O的半径为r,即OC=r,



    ∵OC⊥BC,且OC是圆O的半径
    ∴BC是圆O的切线,
    又AB是圆O的切线,
    ∴BD=BC=3r
    在中,


    在中,

    整理得,
    解得,,(不合题意,舍去)
    ∴的半径为2.4
    【点睛】
    此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
    2、 (1)见解析
    (2)4
    【解析】
    【分析】
    (1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
    (2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
    (1)
    证明:连接OD,

    ∵∠ACB=90°,AC=BC,
    ∴∠ABC=45°,
    ∴∠COD=2∠ABC=90°,
    ∵四边形GDEC是平行四边形,
    ∴DE∥CG,
    ∴∠ODE+∠COD=180°,
    ∴∠ODE=90°,即OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线;
    (2)
    解:设⊙O的半径为r,
    ∵四边形GDEC是平行四边形,
    ∴CG=DE=7,DG=CE=5,
    ∵∠GOD=90°,
    ∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
    解得:r1=3,r2=4,
    当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
    ∴r=4,即⊙O的半径4.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
    (2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
    (1)
    连接PC,
    ∵PC=PB,
    ∴∠B=∠PCB,
    ∴∠APC=2∠B,
    ∵2∠B+∠DAB=180°,
    ∴∠DAP+∠APC=180°,
    ∴PC∥DA,
    ∵∠ADC=90°,
    ∴∠DCP=90°,
    即DC⊥CP,
    ∴直线CD为⊙P的切线;

    (2)
    连接AC,
    ∵∠B=30°,
    ∴∠CPA=2∠B=60°,
    ∵AP=CP,∠CPA=60°,
    ∴△APC为等边三角形,
    ∵∠DCP=90°,
    ∴∠DCA=90°-∠ACP=90°-60°=30°,
    ∵AD=2,∠ADC=90°,
    ∴AC=2AD=4,
    ∴CD=.
    【点睛】
    本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
    4、 (1)见解析
    (2)见解析
    (3)
    【解析】
    【分析】
    (1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
    (2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
    (3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
    (1)
    连接OC,如图,

    ∵AB是的直径,

    即.
    ,,


    .

    .

    又是半径,
    是⊙O的切线.
    (2)
    由(1),得.

    .


    平分,
    .
    又,
    ,即.

    .
    (3)
    作于点F,如图,


    平分,,

    ,由勾股定理得:.
    ,,

    .

    .
    设,

    .
    解得或(舍去).

    Rt△ACF中,由勾股定理得:,
    ,.
    由(2)得,
    .
    ,,



    【点睛】
    本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
    5、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.

    相关试卷

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共30页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品测试题:

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品测试题,共26页。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共34页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map