![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734429/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734429/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734429/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题,共29页。试卷主要包含了下列四个命题中,真命题是,如图,FA等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<22、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )A.30° B.36° C.60° D.72°3、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)4、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是( )A.相切 B.相交C.相离、相切或相离 D.相切或相交5、下列四个命题中,真命题是( )A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧6、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )A. B. C. D.7、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为( )A. B.2 C.2 D.38、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )A.18° B.28° C.36° D.45°9、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )A.点A在⊙O内 ; B.点A在⊙O上;C.点A在⊙O外; D.不能确定.10、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )A.50° B.55° C.65° D.75°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在中,,,,如果以点A为圆心,AC为半径作,那么斜边AB的中点D在______.(填“内”、“上”或者“外”)2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.3、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.4、中,,,点I是的内心,点O是的外心,则______.5、如图,半圆O的直径,在中,,,.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为(s),运动开始时,半圆O在的左侧,.当______时,的一边所在直线与半圆O所在的圆相切.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.(1)求证是的切线;(2)若,,求的半径.2、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.(1)求证:是的切线;(2)若,,求半径的长.3、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.(1)求证:AC为的切线:(2)若半径为2,.求阴影部分的面积.4、如图,在RtABC中,∠ACB=Rt∠,以AC为直径的半圆⊙O交AB于点D,E为BC的中点,连结DE、CD.过点D作DF⊥AC于点F.(1)求证:DE是⊙O的切线;(2)若AD=5,DF=3,求⊙O的半径.5、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.(1)求证:直线DE是⊙O的切线;(2)若DE=7,CE=5,求⊙O的半径. -参考答案-一、单选题1、A【解析】【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,∴OP需要满足的条件是OP>4,故选:A.【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.2、B【解析】【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.3、C【解析】【分析】先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.【详解】解:设直线的解析式为,将点代入得:,解得,则直线的解析式为,A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;故选:C.【点睛】本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.4、D【解析】【分析】根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.【详解】解:的半径为8,,点到直线的距离,直线与的位置关系是相切或相交.故选:D.【点睛】此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.5、B【解析】【分析】利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.【详解】解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;故选:B【点睛】本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.6、A【解析】【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB=2,CD=3,EF=5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.7、C【解析】【分析】根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.【详解】解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、、,,∵∠F=60°,∴为等边三角形,,∵△FDE的周长为12,即,∴,即,作,如下图:则,,∴,设,则,由勾股定理可得:,解得,,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.8、A【解析】【分析】连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.【详解】解:如图,连接,是的切线故选A【点睛】本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.9、C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为3cm,OA=6cm,∴d>r,∴点A与⊙O的位置关系是:点A在⊙O外,故选:C.【点睛】本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.10、C【解析】【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∴∠A=∠BOC=25°,∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.二、填空题1、上【解析】【分析】先利用中点的含义求解 结合点与圆心的距离等于圆的半径,则点在圆上,从而可得答案.【详解】解:如图,,,,为的中点, 在上,故答案为:上【点睛】本题考查的是点与圆的位置关系的判断,掌握“点与圆的位置关系的判断方法”是解本题的关键.2、3【解析】【分析】由切线长定理和,可得为等边三角形,则.【详解】解:连接,如下图:,分别为的切线,,为等腰三角形,,,为等边三角形,,,.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.3、122.5°【解析】【分析】如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-∠ABC-∠ACB,然后把∠BAC的度数代入计算即可.【详解】解:如图所示,作△ABC外接圆,∵点O是△ABC的外心,∠BOC=130°,∴∠A=65°,∴∠ABC+∠ACB=115°,∵点I是△ABC的内心,∴∠IBC+∠ICB=×115°=57.5°,∴∠BIC=180°﹣57.5°=122.5°.故答案为:122.5°.【点睛】此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.4、14.3【解析】【分析】如图,过点A作交于点D,由等腰三角形得点I、点O都在直线AD上,连接OB、OC,过点I作交于点E,设,,根据勾股定理求出,则,,由勾股定理求出R的值,证明由相似三角形的性质得,求出r的值,即可计算.【详解】如图,过点A作交于点D,∵,,∴是等腰三角形,∴,∵点I是的内心,点O是的外心,∴点I、点O都在直线AD上,连接OB、OC,过点I作交于点E,设,,在中,,∴,,在中,,解得:,∵,,∴,∴,即, 解得:,∴,∴.故答案为:14.3.【点睛】本题考查内切圆与外接圆,等腰三角形的性质以及相似三角形的判定与性质,掌握内切圆的圆心为三角形三条角平分线的交点,外接圆圆心为三角形三条垂直平分线的交点是解题的关键.5、1或4或7【解析】【分析】的一边所在直线与半圆O所在的圆相切有三种情况:当点C与点E重合、点O与点C重合以及点D与点C重合,分别找出点O运动的路程,即可求出答案.【详解】如图,当点C与点E重合时,AC与半圆O所在的圆相切,∵,∴,∴,即点O运动了2cm,∴,当AB与半圆O所在的圆相切时,过点C作交于点F,∵,,∴,∴,即点O与点C重合,∴点O运动了8cm,∴,当点C与点D重合时,AC与半圆O所在的圆相切,,即点O运动了14cm,∴,故答案为:1或4或7.【点睛】考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接,∵,∴,∴是直径,是的中点.∵平分,∴,∵,∴,∴,∴.又∵,∴,∴,又∵经过半径的外端,∴是的切线.(2)解:∵,∴,在与中,,,∴.∴,在中,,,∴.设半径为,则,,即,∴.∴的半径为.【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.2、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证是的切线;(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.(1)证明:∵是的直径∴∴∵∴∴, ∴∴是的切线;(2)解:∵,∴∵∴∵,∴∴, ∵∴∴,在中,,即∴∴半径长为.【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.3、 (1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.(1)解:如图,连接OB,∵AB是的切线,∴,即,∵BC是弦,,∴,∴,在和中,,∴,∴,即,∴AC是的切线;(2)解:在中,由勾股定理得,,,在中,,∴,∴,∴,∴.【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.4、 (1)见解析(2)【解析】【分析】(1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.(2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.(1)证明:连接OD,∵AC是直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵E是BC的中点,∴,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠EDC+∠ODC=∠ECD +∠OCD,即∠ACB=∠ODE,∵∠ACB=90°,∴∠ODE=90°,又∵OD是半径,∴DE是⊙O的切线.(2)解:设OD=x,∵DF⊥AC,AD=5,DF=3,∴,在三角形ADF中,,解得,,⊙O的半径为.【点睛】本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.5、 (1)见解析(2)4【解析】【分析】(1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;(2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.(1)证明:连接OD, ∵∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠COD=2∠ABC=90°,∵四边形GDEC是平行四边形,∴DE∥CG,∴∠ODE+∠COD=180°,∴∠ODE=90°,即OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线;(2)解:设⊙O的半径为r,∵四边形GDEC是平行四边形,∴CG=DE=7,DG=CE=5,∵∠GOD=90°,∴OD2+OG2=DG2,即r2+(7﹣r)2=52,解得:r1=3,r2=4,当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,∴r=4,即⊙O的半径4.【点睛】本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共35页。试卷主要包含了在平面直角坐标系中,以点,如图,PA等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题,共35页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀课后作业题,共39页。试卷主要包含了如图,FA等内容,欢迎下载使用。