搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试卷(精选)

    难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试卷(精选)第1页
    难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试卷(精选)第2页
    难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试卷(精选)第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题,共31页。试卷主要包含了如图,,以半径为1的圆的内接正三角形等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是(  )A.18° B.28° C.36° D.45°2、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为(       A.相切 B.相离 C.相切或相交 D.相切或相离3、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(       A. B. C. D.4、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(       A.相离 B.相切 C.相交 D.相交或相切5、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )A.2,2 B.4,4 C.4,2 D.4,6、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(       A.1 B.2 C.3 D.47、如图,的切线,是切点,点上,且,则等于(       A.54° B.58° C.64° D.68°8、如图,的切线,是切点,上的点,若,则的度数为(       A. B. C. D.9、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则(       A.不能构成三角形 B.这个三角形是等边三角形C.这个三角形是直角三角形 D.这个三角形是等腰三角形10、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(       A.6 B. C.3 D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABBCCD分别与⊙O相切于点EFG三点,且ABCDBO=6,CO=8,则BEGC的长为_____.2、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.3、如图,半径为2的与正五边形ABCDE的边ABDE分别相切于点BD,则劣弧BD的长为______. 4、已知中,,以为圆心,长度为半径画圆,则直线的位置关系是__________.5、已知正六边形的半径为2,则该正六边形的面积为______°.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点(1)求证的切线;(2)若,求的半径.2、如图,直线MN交⊙OAB两点,AC是直径,AD平分∠CAM交⊙OD,过DDEMNE(1)求证:DE是⊙O的切线;(2)若DE=8,AE=6,求⊙O的半径.3、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.4、数学课上老师提出问题:“在矩形中,的中点,边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.小明的思路是:解题应分类讨论,显然不可能与边所在直线相切,只需讨论与边相切两种情形.请你根据小明所画的图形解决下列问题:(1)如图1,当相切于点时,求的长;(2)如图2,当相切时,①求的长;②若点从点出发沿射线移动,连接的中点,则在点的移动过程中,直接写出点内的路径长为______.5、如图,在中,,⊙O的外接圆,过点C,交⊙O于点D,连接ADBC于点E,延长DC至点F,使,连接AF(1)求证:(2)求证:AF是⊙O的切线. -参考答案-一、单选题1、A【解析】【分析】连接OADE,利用切线的性质和角之间的关系解答即可.【详解】解:连接OADE,如图,AC的切线,OA的半径,OAACOAC=90°ADE=36°AOE=2∠ADE=72°C=90°-∠AOE=90°-72°=18°故选:A.【点睛】本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.2、C【解析】【分析】根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.【详解】解:∵半径为5的圆,直线l上一点到圆心的距离是5,∴圆心到直线的距离等于或小于5直线和圆的位置关系为相交或相切,故选:C【点睛】本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设O的半径为r,圆心O到直线l的距离为d直线lO相交dr直线lO相切dr直线lO相离dr3、A【解析】【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.4、B【解析】【分析】圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解:O的直径为10cm,圆心O到直线l的距离为5cm,   O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形, ∴这个正六边形半径R和扳手的开口a的值分别是4,4故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.6、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.7、C【解析】【分析】连接,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接,如下图:PAPB的切线,AB是切点∴由四边形的内角和可得:故选C.【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.8、A【解析】【分析】如图,连接先求解 再利用圆周角定理可得,从而可得答案.【详解】解:如图,连接 的切线, 故选A【点睛】本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.9、C【解析】【分析】分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.【详解】如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OCOEOGOA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,OC=OAcos60°=OE= OAcos45°=OG= OAcos30°=∴这个三角形是直角三角形,故选C.【点睛】本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.10、D【解析】【分析】如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OCOBACAB都是圆O的切线,∴∠OCA=∠OBA=90°,OC=OB又∵OA=OARtOCARtOBAHL),∴∠OAC=∠OAB∵∠DAC=60°,∴∠AOB=30°,OA=2AB=6,∴圆O的直径为故选D.【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.二、填空题1、10【解析】【分析】先由切线长定理得到BFBECFCGBO平分∠ABCCO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.【详解】ABBCCD分别与⊙O相切于点EFG三点,BFBECFCGBO平分∠ABCCO平分∠BCDABCD∴∠ABC+∠BCD=180°,∴∠BOC=90°,在RtOBC中,∵BO=6,CO=8,BECG=10.故答案为:10.【点睛】此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.2、122.5°【解析】【分析】如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-ABC-ACB,然后把∠BAC的度数代入计算即可.【详解】解:如图所示,作△ABC外接圆,∵点O是△ABC的外心,∠BOC=130°,∴∠A=65°,∴∠ABC+∠ACB=115°,∵点I是△ABC的内心,∴∠IBC+∠ICB=×115°=57.5°,∴∠BIC=180°﹣57.5°=122.5°.故答案为:122.5°.【点睛】此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.3、##【解析】【分析】连接OBOD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.【详解】解:连接OBOD∵五边形ABCDE是正五边形,∴∠E=∠AABDE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴劣弧BD的长为故答案为:【点睛】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.4、相切【解析】【分析】过点CCDABD,在Rt△ABC中,根据勾股定理AB=cm,利用面积得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线的位置关系是相切.【详解】解:过点CCDABD在RtABC中,根据勾股定理AB=cm,SABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,CD=r=4.8cm,∴直线的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.5、【解析】【分析】正六边形的面积由6个全等的边长为2的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.【详解】解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则OAB是正三角形.OA=AB=2,AC=AB=1,SOAB=ABOC=×2×=则正六边形的面积为6×=6故答案为:6【点睛】本题考查了正多边形的面积,等边三角形的性质,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接是直径,的中点.平分又∵又∵经过半径的外端,的切线.(2)解:∵中,中,.设半径为,则的半径为【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.2、 (1)见解析(2)【解析】【分析】(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DOMN,根据平行线的性质和切线的判定即可证的结论;(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.(1)证明:连接ODOAOD∴∠OAD=∠ODAAD平分∠CAM,∠OAD=∠DAE∴∠ODA=∠DAEDOMNDEMNDEODD在⊙O上,   DE是⊙O的切线;(2)解:∵∠AED=90°,DE=8,AE=6,AD=10,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE∴△ACD∽△ADE,即AC∴⊙O的半径是【点睛】本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.3、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接平分是半径,所在直线与相切.(2)解:连接的直径,又∵的半径为【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.4、 (1)BP=2(2)①4.8;②9.6【解析】【分析】(1)连接PT,由⊙PAD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在RtBPE中,用勾股定理即得BP=2(2)①由⊙PCD相切,有PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,由勾股定理得x2+22=(10-x2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过PPNEMN,由EMABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.(1)连接PT,如图:∵⊙PAD相切于点T∴∠ATP=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABPT是矩形,PT=AB=4=PEEAB的中点,BE=AB=2,RtBPE中,(2)①∵⊙PCD相切,PC=PEBP=x,则PC=PE=10-xRtBPE中,BP2+BE2=PE2x2+22=(10-x2解得x=4.8,BP=4.8;②点Q从点B出发沿射线BC移动,MAQ的中点,点M在⊙P内的路径为EM,过PPNEMN,如图:由题可知,EMABQ的中位线,EMBQ∴∠BEM=90°=∠BPNEM∴∠PNE=90°,EM=2EN∴四边形BPNE是矩形,EN=BP=4.8,EM=2EN=9.6.故答案为:9.6.【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.5、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AFBC,从而得OAAF,从而得证.(1)解:∵又∵(2)解:如图,连接OA∵已知AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键. 

    相关试卷

    初中第29章 直线与圆的位置关系综合与测试优秀课堂检测:

    这是一份初中第29章 直线与圆的位置关系综合与测试优秀课堂检测,共37页。

    2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题,共32页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map