终身会员
搜索
    上传资料 赚现金

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(精选)

    立即下载
    加入资料篮
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(精选)第1页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(精选)第2页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(精选)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀习题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀习题,共29页。


    九年级数学下册第二十九章直线与圆的位置关系定向训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为(    

    A. B.

    C.3 D.

    2、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是(  )

    A.点P在⊙O B.点P在⊙O C.点P在⊙O D.无法确定

    3、如图,AB为⊙O的切线,切点为A,连接AOBOBO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为(      

    A.54° B.36° C.32° D.27°

    4、如图,在平面直角坐标系中,.则△ABC的外心坐标为(         

    A. B. C. D.

    5、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(      

    A.相离 B.相切 C.相交 D.相交或相切

    6、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    7、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN,则△AMN的周长为(      

    A.14cm B.8cm C.7cm D.9cm

    8、如图,的两边分别相切,其中OA边与⊙C相切于点P.若,则OC的长为(      

    A.8 B. C. D.

    9、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )

    A.4 B.5 C.6 D.7

    10、如图,相切于点经过的圆心与交于,若,则      

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知五边形的内接正五边形,则的度数为______.

    2、如图,已知正方形ABCD和正△EGF都内接于⊙O,当EFBC时,的度数为 _____.

    3、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.

    4、已知中,,以为圆心,长度为半径画圆,则直线的位置关系是__________.

    5、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点AO_______.(填“上”、“内”、“外”)

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,已知的直径,点上,点外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)

    (2)综合运用,在你所作的图中.若,求证:的切线.

    2、如图,点E的内心,AE的延长线交BC于点F,交的外接圆D.过D作直线

    (1)求证:DM的切线;

    (2)求证:

    (3)若,求的半径.

    3、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E

    (1)求证:直线DC是⊙O的切线;

    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).

    4、如图,在RtABC中,∠ACBRt∠,AC为直径的半圆OAB于点DEBC的中点,连结DECD.过点DDFAC于点F

    (1)求证:DE是⊙O的切线;

    (2)若AD=5,DF=3,求⊙O的半径.

    5、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE

    (1)求证:AD是⊙O的切线;

    (2)若AE=CE=2,求⊙O的半径和线段BC的长.

     

    -参考答案-

    一、单选题

    1、C

    【解析】

    【分析】

    连接OAOB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.

    【详解】

    解:如图,连接OAOB,则OA=OB

    ∵四边形ABCD是正方形,

    是等腰直角三角形,

    ∵正方形ABCD的面积是18,

    ,即:

    故选C.

    【点睛】

    本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.

    2、A

    【解析】

    【分析】

    根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.

    【详解】

    解:∵⊙O的半径分别是3,点P到圆心O的距离为4,

    dr

    ∴点P与⊙O的位置关系是:点在圆外.

    故选:A

    【点睛】

    本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.

    3、D

    【解析】

    【分析】

    由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.

    【详解】

    解:∵AB为⊙O的切线,

    ∴∠OAB=90°,

    ∵∠ABO=36°,

    ∴∠AOB=90°﹣∠ABO=54°,

    OAOD

    ∴∠ADC=∠OAD

    ∵∠AOB=∠ADC+∠OAD

    ∴∠ADCAOB=27°;

    故选:D

    【点睛】

    本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.

    4、D

    【解析】

    【分析】

    BC两点的坐标可以得到直线BCy轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为Pa,-1),利用两点距离公式和外心的性质得到,由此求解即可.

    【详解】

    解:∵B点坐标为(2,-1),C点坐标为(2, 3),

    ∴直线BCy轴,

    ∴直线BC的垂直平分线为直线y=1,

    ∵外心是三角形三条边的垂直平分线的交点,

    ∴△ABC外心的纵坐标为1,

    设△ABC的外心为Pa,1),

    解得

    ∴△ABC外心的坐标为(-2, 1),

    故选D.

    【点睛】

    本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.

    5、B

    【解析】

    【分析】

    圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.

    【详解】

    解:O的直径为10cm,圆心O到直线l的距离为5cm,

       O的半径等于圆心O到直线l的距离,

    直线l与⊙O的位置关系为相切,

    故选B

    【点睛】

    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.

    6、D

    【解析】

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    7、B

    【解析】

    【分析】

    根据切线长定理得到BFBECFCDDNNGEMGMADAE,然后利用三角形的周长和BC的长求得AEAD的长,从而求得△AMN的周长.

    【详解】

    解:∵圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN

    BFBECFCDDNNGEMGMADAE

    ∵△ABC周长为20cmBC=6cm

    AEAD=4(cm),

    ∴△AMN的周长为AM+MG+NG+ANAM+ME+AN+NDAE+AD=4+4=8(cm),

    故选:B

    【点睛】

    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AEAD的长,难度不大.

    8、C

    【解析】

    【分析】

    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.

    【详解】

    解:如图所示,连接CP

    OAOB都是圆C的切线,∠AOB=90°,P为切点,

    ∴∠CPO=90°,∠COP=45°,

    ∴∠PCO=∠COP=45°,

    CP=OP=4,

    故选C.

    【点睛】

    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.

    9、A

    【解析】

    【分析】

    根据点与圆的位置关系可得,由此即可得出答案.

    【详解】

    解:的半径为5,点内,

    观察四个选项可知,只有选项A符合,

    故选:A.

    【点睛】

    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.

    10、B

    【解析】

    【分析】

    连结CO,根据切线性质相切于点,得出OCBC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.

    【详解】

    解:连结CO

    相切于点

    OCBC

    ∴∠COB+∠B=90°,

    ∴∠COB=90°-∠B=90°-40°=50°,

    故选B.

    【点睛】

    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.

    二、填空题

    1、72°##72度

    【解析】

    【分析】

    根据正多边形的中心角的计算公式: 计算即可.

    【详解】

    解:∵五边形ABCDE是⊙O的内接正五边形,

    ∴五边形ABCDE的中心角∠AOB的度数为 =72°,

    故答案为:72°.

    【点睛】

    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.

    2、

    【解析】

    【分析】

    连接,并延长交于点,连接,先根据圆内接正多边形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,从而可得,于是可得答案.

    【详解】

    解:如图,连接,并延长交于点,连接

    正方形和正都内接于

    由圆周角定理得:

    的度数为

    故答案为:

    【点睛】

    本题考查了圆周角定理、圆内接正多边形的性质等知识点,熟练掌握圆内接正多边形的性质是解题关键.

    3、122.5°

    【解析】

    【分析】

    如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-ABC-ACB,然后把∠BAC的度数代入计算即可.

    【详解】

    解:如图所示,作△ABC外接圆,

    ∵点O是△ABC的外心,∠BOC=130°,

    ∴∠A=65°,

    ∴∠ABC+∠ACB=115°,

    ∵点I是△ABC的内心,

    ∴∠IBC+∠ICB=×115°=57.5°,

    ∴∠BIC=180°﹣57.5°=122.5°.

    故答案为:122.5°.

    【点睛】

    此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.

    4、相切

    【解析】

    【分析】

    过点CCDABD,在Rt△ABC中,根据勾股定理AB=cm,利用面积得CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线的位置关系是相切.

    【详解】

    解:过点CCDABD

    在RtABC中,根据勾股定理AB=cm,

    SABC=CD·AB=AC·BC,即10CD=6×8,

    解得CD=4.8cm,

    CD=r=4.8cm,

    ∴直线的位置关系是相切.

    故答案为:相切.

    【点睛】

    本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.

    5、外

    【解析】

    【分析】

    点与圆心的距离d,则dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内.据此作答.

    【详解】

    解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm

    即点A到圆心的距离大于圆的半径,

    ∴点A在⊙O外.

    故答案为:外.

    【点睛】

    本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内.

    三、解答题

    1、 (1)作图见解析

    (2)证明见解析

    【解析】

    【分析】

    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D即可.

    (2)连接ADAB为直径,进而可得AE的切线.

    (1)

    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D

    (2)

    解:连接AD,如图

    为直径

    又∵AB为直径

    AE的切线.

    【点睛】

    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.

    2、 (1)见解析

    (2)见解析

    (3)⊙O的半径为5.

    【解析】

    【分析】

    (1)连接ODBCH,根据圆周角定理和切线的判定即可证明;

    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE

    (3)根据垂径定理和勾股定理即可求出结果.

    (1)

    证明:连接ODBCH,如图,

    ∵点E是△ABC的内心,

    AD平分∠BAC

    即∠BAD=∠CAD

    ODBCBH=CH

    DMBC

    ODDM

    DM是⊙O的切线;

    (2)

    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE

    ∴∠DBC=∠BAD

    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE

    即∠BED=∠DBE

    BD=DE

    (3)

    解:设⊙O的半径为r

    连接ODOB,如图,

    由(1)得ODBCBH=CH

    BC=8,

    BH=CH=4,

    DE=2BD=DE

    BD=2

    RtBHD中,BD2=BH2+HD2

    ∴(22=42+HD2,解得:HD=2,

    RtBHO中,

    r2=BH2+(r-2)2,解得:r=5.

    ∴⊙O的半径为5.

    【点睛】

    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.

    3、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;

    (2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.

    (1)

    证明:如图所示,连接OC

    AB的直径,直线l相切于点A

    ∴直线DC的切线.

    (2)

    解:∵

    又∵

    是等边三角形,

    中,

    ∴阴影部分的面积=

    【点睛】

    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.

    4、 (1)见解析

    (2)

    【解析】

    【分析】

    1)连接OD,求出DECEBE,推出∠EDC+ODC=∠ECD +OCD,求出∠ACB=∠ODE90°,根据切线的判定推出即可.

    2)根据勾股定理求出AF3,设OD=x,根据勾股定理列出方程即可.

    (1)

    证明:连接OD

    AC是直径,

    ∴∠ADC90°,

    ∴∠BDC180°﹣∠ADC90°,

    EBC的中点,

    ∴∠EDC=∠ECD

    OCOD

    ∴∠ODC=∠OCD

    ∴∠EDC+ODC=∠ECD +OCD

    即∠ACB=∠ODE

    ∵∠ACB90°,

    ∴∠ODE90°,

    又∵OD是半径,

    DEO的切线.

    (2)

    解:OD=x

    DFACAD=5,DF=3,

    在三角形ADF中,

    解得,

    O的半径为

    【点睛】

    本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.

    5、 (1)见解析

    (2)4,

    【解析】

    【分析】

    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;

    (2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.

    (1)

    证明:连接OA

        

    ∴∠AOC+∠OAD=180°,

    ∵∠AOC=2∠ABC=2×45°=90°,

    ∴∠OAD=90°,    

    OAAD      

    OA是半径,

    AD是⊙O的切线.         

    (2)

    解:设⊙O的半径为R,则OA=ROE=R-2.

    RtOAE中,

    解得(不合题意,舍去),

    延长CO交⊙OF,连接AF

    ∵∠AEF=∠CEB,∠B=∠AFE

    ∴△CEB∽△AEF

          

    CF是直径,

    CF=8,∠CAF=90°,

    又∵∠F=∠ABC=45°,

     ∴∠F=∠ACF=45°,

    AF=

        

    BC=    

    【点睛】

    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.

     

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共39页。试卷主要包含了以半径为1的圆的内接正三角形,如图,FA等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map