搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版九年级数学下册第三十章二次函数章节测评试题(含解析)

    2021-2022学年度冀教版九年级数学下册第三十章二次函数章节测评试题(含解析)第1页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数章节测评试题(含解析)第2页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数章节测评试题(含解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试优秀练习题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共33页。
    九年级数学下册第三十章二次函数章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    2、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    3、已知二次函数的图象上有三点,,,则、、的大小关系为( )
    A. B. C. D.
    4、已知二次函数y=ax2+bx+c的图象如图所示,则(  )

    A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
    C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
    5、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
    A.正方体集装箱的体积,棱长xm
    B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
    C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
    D.高为14m的圆柱形储油罐的体积,底面圆半径xm
    6、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A. B.
    C. D.
    7、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为(  )

    A.2 B.3 C.3 D.D3
    8、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )

    A.① B.② C.③ D.②③
    9、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )

    A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
    10、若二次函数与轴的一个交点为,则代数式的值为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.

    2、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.

    3、已知某函数的图象经过,两点,下面有四个推断:
    ①若此函数的图象为直线,则此函数的图象与直线平行;
    ②若此函数的图象为双曲线,则也在此函数的图象上;
    ③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
    ④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
    所有合理推断的序号是______.
    4、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.

    5、若抛物线与轴交于原点,则的值为 __.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知抛物线经过,且顶点在y轴上.
    (1)求抛物线解析式;
    (2)直线与抛物线交于A,B两点.
    ①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
    ②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
    2、如图1,已知抛物线交x轴于A,B两点,交y轴于点C,点P是直线上一动点.

    (1)求直线的解析式;
    (2)若点P关于原点O的对称点Q刚好落在抛物线上,求点P的坐标;
    (3)如图2,连接,过点P作PEBC交x轴于点E,连接,将沿对折,点P的对应点恰好落在x轴上时,求点E的坐标.
    3、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).

    (1)抛物线的对称轴为x=  ;抛物线与y轴的交点坐标为  ;
    (2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
    (3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
    4、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:
    x


    0
    1
    2
    3

    y

    0



    0

    (1)求该二次函数的表达式;
    (2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.
    5、已知二次函数y=x2+2x.
    (1)写出该二次函数图象的对称轴.
    (2)已知该函数图象经过A(x1,y1),B(x2,y2)两个不同的点.
    ①当x1=3n+4,x2=2n﹣1,且y1=y2时,求n的值.
    ②当x1>﹣1,x2>﹣1时,求证:(x1﹣x2)(y1﹣y2)>0

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    2、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    3、A
    【解析】
    【分析】
    分别求出、、的大小,再进行判断即可.
    【详解】
    解:




    A、故选项正确,符合题意;
    B、故选项错误,不符合题意;
    C、故选项错误,不符合题意;
    D、故选项错误,不符合题意.
    故选:A.
    【点睛】
    此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
    4、B
    【解析】
    【分析】
    根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
    【详解】
    解:∵抛物线的开口向上,
    ∴a>0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴>0,
    ∴b<0,
    ∵抛物线与y轴的交点在x轴的上方,
    ∴c>0,
    ∵抛物线与x轴有一个交点,
    ∴Δ=0,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
    5、D
    【解析】
    【分析】
    根据题意,列出关系式,即可判断是否是二次函数.
    【详解】
    A.由题得:,不是二次函数,故此选项不符合题意;
    B.由题得:,不是二次函数,故此选项不符合题意;
    C.由题得:,不是二次函数,故此选项不符合题意;
    D.由题得:,是二次函数,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
    6、C
    【解析】
    【分析】
    此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
    【详解】
    解:∵抛物线的顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
    ∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
    故选:C
    【点睛】
    此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
    7、B
    【解析】
    【分析】
    先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
    【详解】
    ∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
    ∴y=a(x+2)2+2,
    ∵与y轴交于点A(0,3),
    ∴3=a(0+2)2+2,解得a=
    ∴原抛物线的解析式为:y=(x+2)2+2,
    ∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
    ∴平移后的抛物线为y=(x﹣1)2﹣1,
    ∴当x=0时,y=,
    ∴A′的坐标为(0,),
    ∴AA′的长度为:3﹣()=3.
    故选:B.
    【点睛】
    本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
    8、B
    【解析】
    【分析】
    把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
    【详解】
    解:∵点M(a,b)在抛物线y=x(2-x)上,

    当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
    ∵△=4-4×(-3)>0,
    ∴有两个不相等的值,
    ∴点M的个数为2,故①错误;
    当b=1时,1=a(2-a),整理得a2-2a+1=0,
    ∵△=4-4×1=0,
    ∴a有两个相同的值,
    ∴点M的个数为1,故②正确;
    当b=3时,3=a(2-a),整理得a2-2a+3=0,
    ∵△=4-4×3<0,
    ∴点M的个数为0,故③错误;
    故选:B.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
    9、D
    【解析】
    【分析】
    由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
    【详解】
    解:A、抛物线开口向下,且与轴正半轴相交,
    ,,
    ,结论A错误,不符合题意;
    B、抛物线顶点坐标为,,

    ,即,结论B错误,不符合题意;
    C、抛物线顶点坐标为,,

    ,结论C错误,不符合题意;
    D、,,
    ,结论D正确,符合题意.
    故选:D.
    【点睛】
    本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
    10、D
    【解析】
    【分析】
    把代入即可求出,则,进而可求出代数式的值.
    【详解】
    解:二次函数与轴的一个交点为,
    时,,


    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
    二、填空题
    1、
    【解析】
    【分析】
    利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
    【详解】
    解:作QM⊥y轴于点M,Q′N⊥y轴于N,

    ∵∠PMQ=∠PNQ′=∠QPQ′=90°,
    ∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
    ∴∠QPM=∠PQ′N,
    在△PQM和△Q′PN中,

    ∴△PQM≌△Q′PN(AAS),
    ∴PN=QM,Q′N=PM,
    设Q(m,m+3),
    ∴PM=|m+2|,QM=|m|,
    ∴ON=|1-m|,
    ∴Q′(m+2,1−m),
    ∴OQ′2=(m+2)2+(1−m)2=m2+5,
    当m=0时,OQ′2有最小值为5,
    ∴OQ′的最小值为,
    故答案为:.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
    2、y=x2-4x+3
    【解析】
    【分析】
    过点C作CH⊥AB于点H,然后利用垂径定理求出CH、AH和BH的长度,进而得到点A和点B的坐标,再将A、B的坐标代入函数解析式求得b与c,最后求得二次函数的解析式.
    【详解】
    解:过点C作CH⊥AB于点H,则AH=BH,

    ∵C(2,),
    ∴CH=,
    ∵半径为2,
    ∴AH=BH==1,
    ∵A(1,0),B(3,0),
    ∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,
    故答案为:y=x2-4x+3.
    【点睛】
    本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.
    3、①②④
    【解析】
    【分析】
    分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
    【详解】
    解:①过,两点的直线的关系式为y=kx+b,则

    解得,
    所以直线的关系式为y=x-1,
    直线y=x-1与直线y=x平行,
    因此①正确;
    ②过,两点的双曲线的关系式为,则,
    所以双曲线的关系式为
    当时,
    ∴也在此函数的图象上,
    故②正确;
    ③若过,两点的抛物线的关系式为y=ax2+bx+c,
    当它经过原点时,则有
    解得,
    对称轴x=-,
    ∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
    当->时,抛物线与y轴的交点在负半轴,
    因此③说法不正确;
    ④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
    所以对称轴x=-=-=-,
    因此函数图象对称轴在直线x=左侧,
    故④正确,
    综上所述,正确的有①②④,
    故答案为:①②④.
    【点睛】
    本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
    4、
    【解析】
    【分析】
    由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
    【详解】
    解:由图象可得:抛物线的对称轴为:


    解得:
    故答案为:
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
    5、-3
    【解析】
    【分析】
    根据函数图象经过原点时,,,代入即可求出的值.
    【详解】
    解:抛物线与轴交于原点,
    当时,,


    故答案为:.
    【点睛】
    本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
    三、解答题
    1、 (1)
    (2)①c的值为-1,②
    【解析】
    【分析】
    (1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;
    (2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设,.把代入中,得,根与系数的关系可得,由勾股定理得,,根据垂直平分线的性质可得,化简可得,进而可得当时,n随k的增大而减小,由可得,进而求得的取值范围
    (1)
    ∵抛物线经过,且顶点在y轴上,
    ,解得
    ∴抛物线解析式为.
    (2)
    ①依题意得:当时,轴,
    与∠PBA都不可能为90°,
    ∴只能是,,∴点P在AB的对称轴(y轴)上,
    ∴点P为抛物线的顶点,即.
    不妨设点A在点B的左侧,直线与y轴交于点C.
    ,,

    ,,


    ∴点
    把代入中,得:
    解得:,(不合题意,舍去).
    ∴c的值为-1.

    ②设,.
    把代入中,得,
    ,由根与系数的关系可得,.

    由勾股定理得,
    ∵点N在AB的垂直平分线上,



    化简得.
    ∵直线与x轴相交,∴点A,B不关于y轴对称,

    又,

    ,即,
    .
    将代入,得,
    .
    由反比例函数的性质,可知:当时,.
    在二次函数中,
    ,对称轴为直线,
    ∴当时,n随k的增大而减小,

    .

    【点睛】
    本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.
    2、 (1)
    (2)或
    (3)或
    【解析】
    【分析】
    (1)根据抛物线的解析式令即可求得的坐标,令即可求得点的坐标,进而待定系数法求得直线的解析式;
    (2)由(1)设点,则在上,代入解方程即可求得的值,进而求得点的值;
    (3)先求得直线的解析式,进而表示出解析式,得点的坐标为,进而根据平行得,根据相似三角形的性质可得,根据勾股定理及逆定理证明是直角三角形,进而可得对称后的点与重合,进而可得,求得点的纵坐标,进而根据求得的值,即可求得点的坐标.
    (1)
    解:已知抛物线交x轴于A,B两点,交y轴于点C,
    令,得

    令,即
    解得

    设直线的解析式为,将点代入得,

    解得
    直线的解析式为
    (2)
    点P是直线上一动点,直线的解析式为
    设点,
    点P关于原点O的对称点Q刚好落在抛物线上,
    则在上

    解得


    (3)
    依题意,设点,
    设直线的解析式为,将点代入得,

    解得
    直线的解析式为
    PEBC
    设直线的解析式为
    令,,则点的坐标为
    ,,
    PEBC






    是直角三角形


    将沿对折,点P的对应点恰好落在x轴上时,
    ,

    与点重合,



    解得



    即或
    解得或


    【点睛】
    本题考查了二次函数与坐标轴交点问题,轴对称问题,相似三角形的性质与判定,勾股定理及其逆定理,一次函数的平移问题,设参数求解是解题的关键.
    3、 (1)1,(0,4)
    (2)顶点坐标为(1,0),y=4x2-8x+4
    (3)
    【解析】
    【分析】
    (1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;
    (2)根据二次函数与x轴交点公式,以及待定系数法求解析式;
    (3)先求对称点坐标根据函数的增减性解决本题.
    (1)
    解:,
    当x=0时,y=ax2-2ax+4=4,
    所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),
    故答案为:1,(0,4).
    (2)
    解:∵抛物线的顶点恰好在x轴上,
    ∴抛物线的顶点坐标为(1,0),
    把(1,0)代入y=ax2-2ax+4得:0=a×12-2a×1+4,
    解得:a=4,
    ∴抛物线的解析式为y=4x2-8x+4.
    (3)
    解:A(m-1,y1)关于对称轴x=1的对称点为A′(3-m,y1),
    B(m,y2)关于对称轴x=1的对称点为B′(2-m,y2),
    若要y1>y3>y2,则3-m>m+2>2-m,解得:.
    【点睛】
    本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.
    4、 (1)二次函数的表达式为: ;
    (2).
    【解析】
    【分析】
    (1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;
    (2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.
    (1)
    解:观察表格数据,由、可知,二次函数图象的顶点坐标为,
    设二次函数的表达式为,
    把代入得,
    -3=a(0-1)2-4,
    ∴,
    ∴,
    即 ;
    (2)
    解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同,
    设二次函数的表达式为,
    在y轴上且在函数图象上,
    将其代入函数表达式为:,
    解得:,
    ∴关于y轴对称的图象所对应的函数表达式为,
    故答案为:.
    【点睛】
    本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.
    5、 (1)直线x=-1
    (2)①-1;②见解析
    【解析】
    【分析】
    (1)直接根据对称轴公式求解;
    (2)①将x1和x2代入函数表达式,根据y1=y2得到方程,解之即可;
    ②将(x1﹣x2)(y1﹣y2)变形为(x1﹣x2)2(x1+x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.
    (1)
    解:二次函数y=x2+2x中,
    对称轴为直线x==-1;
    (2)
    ①当x1=3n+4,x2=2n﹣1,且y1=y2时,
    y1=(3n+4)2+2(3n+4)=9n2+30n+24,
    y2=(2n﹣1)2+2(2n﹣1)=4n2-1,
    则9n2+30n+24=4n2-1,
    解得:n=-5或n=-1;
    当时, 不符合题意,舍去,
    所以
    ②(x1﹣x2)(y1﹣y2)
    =(x1﹣x2)[(x12+2x1)﹣(x22+2x2)]
    =(x1﹣x2)(x12+2x1﹣x22﹣2x2)
    =(x1﹣x2)2(x1+x2+2)
    ∵x1>﹣1,x2>﹣1,
    ∴x1+x2+2>-1-1+2=0,
    又∵A(x1,y1),B(x2,y2)是两个不同的点,
    ∴x1≠x2,
    ∴(x1﹣x2)2>0,
    ∴(x1﹣x2)2(x1+x2+2)>0,
    即(x1﹣x2)(y1﹣y2)>0.
    【点睛】
    本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀随堂练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀随堂练习题,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试精品精练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品精练,共33页。

    2021学年第30章 二次函数综合与测试精练:

    这是一份2021学年第30章 二次函数综合与测试精练,共33页。试卷主要包含了同一直角坐标系中,函数和,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map