冀教版九年级下册第30章 二次函数综合与测试优秀课时作业
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀课时作业,共30页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
A.
B.当时,随的增大而增大
C.
D.是一元二次方程的一个根
2、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
3、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
4、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
5、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C. D.
6、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
7、二次函数的最大值是( )
A. B. C.1 D.2
8、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )
A. B. C. D.
9、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
10、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )
A.14 B.11 C.6 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,函数的图象过点和,下列判断:
①;
②;
③;
④和处的函数值相等.
其中正确的是__(只填序号).
2、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.
3、已知二次函数,当自变量x分别取1、4、5时,对应的函数值分别为,,,则,,的大小关系是________(用“<”号连接).
4、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.
5、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
三、解答题(5小题,每小题10分,共计50分)
1、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
2、如图1,抛物线C1: y=ax2+bx+2与x轴交于点A、B(3,0),与y轴交于点C,且过点D(2,2).
(1)求二次函数表达式;
(2)若点P为抛物线上第四象限内的点,且S△PBC=S△ABC,求点P的坐标;
(3)如图2,将抛物线C1平移,得到的新抛物线C2,使点A的对应点为点D,抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点A.若直线l与图形M有公共点,求k的取值范围.
3、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
(1)求点C的坐标和抛物线的解析式;
(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.
4、已知二次函数y=x2+2x.
(1)写出该二次函数图象的对称轴.
(2)已知该函数图象经过A(x1,y1),B(x2,y2)两个不同的点.
①当x1=3n+4,x2=2n﹣1,且y1=y2时,求n的值.
②当x1>﹣1,x2>﹣1时,求证:(x1﹣x2)(y1﹣y2)>0
5、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价x(元)
40
60
80
日销售量y(件)
80
60
40
(1)求y与x的函数关系式;
(2)求公司销售该商品获得的最大日利润.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
【详解】
解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
B、当时,随的增大而减小,故本选项结论错误;
C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
D、抛物线与轴的一个交点坐标是,对称轴是直线,
设另一交点为,
,
,
另一交点坐标是,
是一元二次方程的一个根,
故本选项结论正确.
故选:D.
【点睛】
本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
2、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
3、D
【解析】
【分析】
先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
【详解】
解:∵,
∴对称轴为直线x=b,开口向下,
在对称轴右侧,y随x的增大而减小,
∵当x>1时,y随x的增大而减小,
∴1不在对称轴左侧,
∴b≤1,
故选:D.
【点睛】
本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
4、C
【解析】
【分析】
利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
【详解】
解: 抛物线y=mx2+4mx+m﹣2(m≠0),
抛物线的对称轴为: 故①符合题意;
当时,
所以抛物线与轴有两个交点,故②不符合题意;
当时,抛物线的开口向上,如图,
则关于的对称点为: 而
故③符合题意;
当时,抛物线的开口向下,如图,
同理可得:由
则或 故④符合题意,
综上:符合题意的有:①③④
故选:C
【点睛】
本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
5、D
【解析】
【分析】
分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=4,∠A=∠C=90°,AD∥BC,
∴∠ADB=∠DBC=60°,
∴∠ABD=∠CDB=30°,
∴BD=2AD=8,
当点P在AD上时,PE⊥BQ
S△PBQ =·BQ·PE
=•(8-2t)•(4-t)•sin60°
=(4-t)2(0<t<4),
当点P在线段BD上时,QE’⊥BP
S△PBQ=·BP·QE’
=[12-2(t-4)]•(t-)sin60°
=-t2+t-16(4<t≤8),
观察图象可知,选项D满足条件,
故选:D.
【点睛】
本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
6、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
7、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
8、D
【解析】
【分析】
由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
【详解】
解:A、由抛物线的开口向上知,
对称轴位于轴的右侧,
.
抛物线与轴交于负半轴,
,
;
故选项正确,不符合题意;
B、对称轴为直线,得,即,故选项正确,不符合题意;
C、如图,当时,,,故选项正确,不符合题意;
D、当时,,
,即,故选项错误,符合题意;
故选:D.
【点睛】
本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
9、B
【解析】
【分析】
根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
【详解】
A. ,,随的增大而增大,故A选项不符合题意.
B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
D. ,,随的增大而增大,故D选项不符合题意;
故选B.
【点睛】
本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
10、B
【解析】
【分析】
首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
【详解】
解:,
抛物线顶点的坐标为,
,
点的横坐标为,
把代入,得到,
,
.
故选:B.
【点睛】
本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
二、填空题
1、①③④
【解析】
【分析】
根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据、的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.
【详解】
解:抛物线开口向下,
,
抛物线交轴于正半轴,
,
,
,
,故①正确,
,,
,
,
时,,则,
,
,故②错误,
的图象过点和,
方程的根为,,
方程的根为,
,
,故③正确;
的图象过点和,
抛物线的对称轴为直线,
,
和处的函数值相等,故④正确,
故答案为:①③④.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.
2、
【解析】
【分析】
根据抛物线的平移规律:上加下减,左加右减解答即可.
【详解】
解:∵抛物线的顶点坐标为(0,2),
其图象先向右平移1个单位长度,再向上平移2个单位长度,
得到的抛物线解析式为
即
故答案为:
【点睛】
本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.
3、y1<y2<y3
【解析】
【分析】
利用二次函数图象上点的坐标特征可分别求出y1,y2,y3的值,结合a>0,即可得出a+c<4a+c<9a+c,即y1<y2<y3.
【详解】
解:当x=1时,y1=a(1-2)2+c=a+c;
当x=4时,y2=a(4-2)2+c=4a+c;
当x=5时,y3=a(5-2)2+c=9a+c.
∵a>0,
∴a+c<4a+c<9a+c,
∴y1<y2<y3.
故答案为:y1<y2<y3.
【点睛】
本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y1,y2,y3的值是解题的关键.
4、(0,-1)
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:将二次函数y=-x2+2图象向下平移3个单位,
得到y=-x2+2-3=-x2-1,
顶点坐标为(0,-1),
故答案为:(0,-1).
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.
5、2
【解析】
【分析】
首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.
【详解】
解:∵
∴,代入得:
∴抛物线的顶点坐标为
∵当时,即,
解得:,
∴抛物线与x轴两个交点坐标为和
∵的“特征三角形”是等腰直角三角形,
∴,即
解得:.
故答案为:2.
【点睛】
此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
2、 (1)抛物线
(2)
(3)或
【解析】
【分析】
(1)把点和点的坐标代入解析式,建立方程组求解即可;
(2)过点作的平行线与抛物线的交点即为点,求出直线的解析式,令,求解即可;
(3)根据题意可求出抛物线的对称轴即抛物线的解析式,并求出封闭图形的端点,点和点,根据一次函数的性质,可以求得的取值范围.()
(1)
解:抛物线过点,点,
,解得,
抛物线;
(2)
由(1)可知,抛物线,
抛物线的对称轴为直线,
,顶点坐标为,
令,可得,
,
直线的解析式为:,
如图,过点作的平行线,交抛物线于点,点即为所求;
直线的解析式为:,
令,
解得或0(舍去),
,
;
(3)
点到点,函数向右移动了3个单位,向上移动了2个单位,
则抛物线的顶点为,即为,
抛物线的解析式为:,
;
当直线经过点,点时,
,解得,
当直线经过点,点时,
,解得,
结合图象可知,若直线与图形有公共点,的取值范围或.
【点睛】
本题属于二次函数综合题,主要涉及待定系数法求函数解析式,三角形的面积,数形结合思想,图象的平移等知识,(3)中求出点和点的坐标,利用数形结合思想得出结论是解题关键.
3、 (1),
(2)或
(3)
【解析】
【分析】
(1)对于,当时,,求得,解方程组即可得到结论;
(2)根据,,得到,连接,设的中点为,求得,,得到直线的解析式为,设,解方程即可得到结论;
(3)由(1)知,抛物线的对称轴为直线,根据轴对称的性质得到,,当,,三点共线时,最小,即最小,求得直线的解析式为,把代入即可得到结论.
(1)
解:对于,当时,,
,
抛物线为常数,交轴于点和点,
,
解得,
抛物线的解析式为;
(2)
解:,,
,
连接,设的中点为,
,,
直线的解析式为,
,
点在直线上,
设,
点是抛物线上一点,
,
解得,
点的坐标为,或,;
(3)
解:由(1)知,抛物线的对称轴为直线,
点与点关于对称,点在直线上,
,,
当,,三点共线时,最小,即最小,
设直线的解析式为,
,
解得,
直线的解析式为,
把代入得,,
,
当最小时,求点的坐标.
【点睛】
本题是二次函数的综合题,考查了待定系数法求函数的解析式以及二次函数的性质,轴对称最短路线问题,解题的关键是熟练掌握待定系数法求函数的解析式.
4、 (1)直线x=-1
(2)①-1;②见解析
【解析】
【分析】
(1)直接根据对称轴公式求解;
(2)①将x1和x2代入函数表达式,根据y1=y2得到方程,解之即可;
②将(x1﹣x2)(y1﹣y2)变形为(x1﹣x2)2(x1+x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.
(1)
解:二次函数y=x2+2x中,
对称轴为直线x==-1;
(2)
①当x1=3n+4,x2=2n﹣1,且y1=y2时,
y1=(3n+4)2+2(3n+4)=9n2+30n+24,
y2=(2n﹣1)2+2(2n﹣1)=4n2-1,
则9n2+30n+24=4n2-1,
解得:n=-5或n=-1;
当时, 不符合题意,舍去,
所以
②(x1﹣x2)(y1﹣y2)
=(x1﹣x2)[(x12+2x1)﹣(x22+2x2)]
=(x1﹣x2)(x12+2x1﹣x22﹣2x2)
=(x1﹣x2)2(x1+x2+2)
∵x1>﹣1,x2>﹣1,
∴x1+x2+2>-1-1+2=0,
又∵A(x1,y1),B(x2,y2)是两个不同的点,
∴x1≠x2,
∴(x1﹣x2)2>0,
∴(x1﹣x2)2(x1+x2+2)>0,
即(x1﹣x2)(y1﹣y2)>0.
【点睛】
本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.
5、 (1)y=-x+120;
(2)最大日利润是2025元.
【解析】
【分析】
(1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;
(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.
(1)
解:设解析式为y=kx+b,
将(40,80)和(60,60)代入,可得,
解得:,
所以y与x的关系式为y=-x+120;
(2)
解:设公司销售该商品获得的日利润为w元,
w=(x-30)y=(x-30)(-x+120)
=-x2+150x-3600
=-(x-75)2+2025,
∵x-30≥0,-x+120≥0,
∴30≤x≤120,
∵-1<0,
∴抛物线开口向下,函数有最大值,
∴当x=75时,w最大=2025,
答:当销售单价是75元时,最大日利润是2025元.
【点睛】
本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试精品练习,共23页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀同步训练题,共41页。试卷主要包含了若二次函数y=ax2+bx+c,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后作业题,共28页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。