初中数学第30章 二次函数综合与测试优秀综合训练题
展开
这是一份初中数学第30章 二次函数综合与测试优秀综合训练题,共33页。试卷主要包含了若点A等内容,欢迎下载使用。
九年级数学下册第三十章二次函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
A.2 B.3 C.4 D.5
2、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )
A. B.
C. D.
3、二次函数的图象如图所示,则下列结论正确的是( )
A.,, B.,, C.,, D.,,
4、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3 B.x=-1 C.x=2 D.x=3
5、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
6、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
A.
B.当时,随的增大而增大
C.
D.是一元二次方程的一个根
7、已知二次函数的图象上有三点,,,则、、的大小关系为( )
A. B. C. D.
8、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )
A.①④ B.③⑤ C.②⑤ D.③④
9、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )
A. B. C. D.
10、二次函数的最大值是( )
A. B. C.1 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)
2、点P(m,n)在对称轴为x=1的函数的图像上,则m-n的最大值为____.
3、如图,抛物线与直线的交点为,.当时,x的取值范围______.
4、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
5、已知二次函数的图象经过点,那么a的值为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).
(1)的长为___________(用含t的代数式表示)
(2)当落在的角平分线上时,求此时t的值.
(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
2、已知抛物线与x轴有交点,求m的取值范围.
3、如图,△ADB与△BCD均为等边三角形,延长AD到E,使∠AEC=90°,AD=5,动点M从点B出发,沿BD方向运动,移动速度为1个单位/秒,同时,点N由点D向点C运动,移动速度为2个单位/秒,其中一个到终点,都停止运动,连接AM,CM,MN,NE,设运动时间为t(0≤t≤2.5)
(1)t为何值时,MN∥BC;
(2)连接BN,t为何值时,BNE三点共线;
(3)设四边形AMNE的面积为S,求S与t的函数关系式;
(4)是否存在某一时刻t,使N在∠CMD的角平分线上,若存在,求出t近似值;若不存在,说明理由.
4、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.
5、已知函数(为常数).
(1)若图象经过点,判断图象经过点吗?请说明理由;
(2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
(3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
【详解】
解:∵对称轴是直线x=1,且经过点(0,2),
∴左同右异ab<0,c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴b2-4ac>0,所以②正确;
∵抛物线对称轴是直线x=1,
∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∴9a+3b+c<2,所以③正确;
∵对称轴为x=1,
∴=1,即b=-2a,
∵x=-1时,y=a-b+c>0,
∴3a+c>0,所以④错误;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
∴y1<y3<y2,所以⑤不正确;
故选:B.
【点睛】
本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
2、B
【解析】
【分析】
分别利用函数解析式分析图象得出答案.
【详解】
解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
B、两函数图象符合题意;
C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
故选:B.
【点睛】
此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
3、D
【解析】
【分析】
首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
【详解】
解:抛物线开口向上,
,
对称轴在轴右侧,
与异号,
,
抛物线与轴交于正半轴,
,
故选:.
【点睛】
此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
①二次项系数决定抛物线的开口方向和大小.
当时,抛物线向上开口;当时,抛物线向下开口.
②一次项系数和二次项系数共同决定对称轴的位置.
当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
③.常数项决定抛物线与轴交点. 抛物线与轴交于.
4、C
【解析】
【分析】
一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
【详解】
解:一元二次方程的两个根分别是和5,
则二次函数图象与轴的交点坐标为、,
根据函数的对称性,函数的对称轴为直线,
故选:C.
【点睛】
本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
5、B
【解析】
【分析】
由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
【详解】
解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
∴点A对称的点的坐标为
∵
∴
故选B.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
6、D
【解析】
【分析】
根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
【详解】
解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
B、当时,随的增大而减小,故本选项结论错误;
C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
D、抛物线与轴的一个交点坐标是,对称轴是直线,
设另一交点为,
,
,
另一交点坐标是,
是一元二次方程的一个根,
故本选项结论正确.
故选:D.
【点睛】
本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
7、A
【解析】
【分析】
分别求出、、的大小,再进行判断即可.
【详解】
解:
A、故选项正确,符合题意;
B、故选项错误,不符合题意;
C、故选项错误,不符合题意;
D、故选项错误,不符合题意.
故选:A.
【点睛】
此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
8、D
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
②由抛物线的开口方向向下可推出a<0;
因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
③由图可知函数经过(-1,0),∴当,,故③正确;
④对称轴为x=,∴,故④正确;
⑤当y=2时,,故⑤错误;
∴正确的是③④
故选:D
【点睛】
二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
9、D
【解析】
【分析】
由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
【详解】
解:A、由抛物线的开口向上知,
对称轴位于轴的右侧,
.
抛物线与轴交于负半轴,
,
;
故选项正确,不符合题意;
B、对称轴为直线,得,即,故选项正确,不符合题意;
C、如图,当时,,,故选项正确,不符合题意;
D、当时,,
,即,故选项错误,符合题意;
故选:D.
【点睛】
本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
10、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
二、填空题
1、
【解析】
【分析】
先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.
【详解】
解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,
所以当时,随的增大而增大,
,
,
故答案为:.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.
2、##0.25
【解析】
【分析】
根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m−n的最大值,本题得以解决.
【详解】
解:∵二次函数y=x2+ax+2的对称轴为x=1,
∴,解得a=-2,
∴二次函数解析式为y=x2-2x+2,
∵点P(m,n)在二次函数y=x2-2x+2的图象上,
∴n=m2-2m+2,
∴m−n=m−(m2-2m+2)=-m2+3m-2=−(m−)2+,
∴当m=时,m−n取得最大值,此时m−n=,
故答案为:.
【点睛】
本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
3、或## 或
【解析】
【分析】
根据图像即可得出时,抛物线的图像在直线的上方,即可得出x的取值范围.
【详解】
如图所示,抛物线与直线的交点为,,
∴当时,或.
故答案为:或.
【点睛】
此题主要考查了二次函数与不等式,正确解读函数图象是解题关键.
4、
【解析】
【分析】
函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.
【详解】
解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大
∴自变量x的取值范围是
故答案为:.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.
5、
【解析】
【分析】
把已知点的坐标代入抛物线解析式可得到的值.
【详解】
解:二次函数的图象经过点,
,
解得:.
故答案为:.
【点睛】
本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
三、解答题
1、 (1)
(2)
(3),当时,S有最大值
【解析】
【分析】
(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
(2)延长交BC于D,由,得到,,则
再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
(1)
解:由旋转的性质可得,
∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
∴,
∵,,
∴,,
∴,
∴,即,
∴,,
∴;
(2)
解:如图所示,延长交BC于D,
∵∠ACB=90°,
∴AC⊥BC,
∵,
∴,,
∴
∵在∠ABC的角平分线上,,,
∴,
∴,
∴,
∴,
又∵,
∴,
解得;
(3)
解:如图2所示,当点正好落在BC上时,
∴,
∵,
∴,
∴,即,
∴,
又∵,
∴,
解得,
当,如图1所示,△ABC与重叠部分即为,
∴此时;
当点M恰好与B重合时,此时,
∴,
解得,
当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
∴,
同理可证,
∴,即,,
∴,
∴,
∵,
∴,
∴即,
∴,
∴,
∴;
当时,如图4所示,,△ABC与重叠部分即为△BPS,
同理可证,
∴,即,
∴,,
∴,
∴综上所述,
∴,
∴由二次函数的性质可知,
∴当时,S有最大值.
【点睛】
本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
2、
【解析】
【分析】
根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.
【详解】
∵抛物线与x轴有交点,
∴方程有两个实数根.
解得.
【点睛】
本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
3、 (1)当秒;MN∥BC;
(2)t=时,B、N、E三点共线;
(3)S=(0≤t≤2.5);
(4)存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【解析】
【分析】
(1)根据MN∥BC;证明△MDN为等边三角形,得出DM=DN,即5-t=2t,解方程即可;
(2)根据∠ADE为平角,求出∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,得出DE=,CE=,根据B、N、E三点共线;得出对顶角性质∠BNC=∠END,再证△BCN∽△EDN,得出即,求出DN即可;
(3)过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,先证BD为∠ADC的平分线,得出MG=MH,再证△MGD∽△BFD,,,求出,分别求出S△AMD=,S△MDN=S△DEN=,再根据S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5)即可;
(4)过点M作MK⊥BC于K,根据等边三角形性质可得∠KBM=60°,可求∠KMB=90°-60°=30°,利用30°直角三角形性质得出BK=,利用勾股定理得出MK=MC,根据角平分线定理使N在∠CMD的角平分线上,得出即,整理得:,化为两函数的交点,用描点法画函数图像,列表连线得出量函数图像Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,t≈1.148时,两函数值相等即可.
(1)
解:∵△ADB与△BCD均为等边三角形,AD=5,
∴BD=DC=AD=5,
∴BM=t,DN=2t,
∵MN∥BC;
∴∠NMD=∠DBC=60°=∠MDN,
∴△MDN为等边三角形,
∴DM=DN,即5-t=2t,
解得秒;
∴当秒;MN∥BC;
(2)
解:∵∠ADE为平角,
∴∠CDE=180°-∠ADB-∠BDC=180°-60°-60°=60°,
∵∠CEA=90°,
∴∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,
∴DE=,CE=,
∵B、N、E三点共线;
∴∠BNC=∠END,
∵∠BCD=∠CDE=60°,
∴BC∥DE,
∴△BCN∽△EDN,
∴即,
解得DN=,
∴2t=,
解得t=,
∴t=时,B、N、E三点共线;
(3)
解:过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,
∵∠BDA=∠BDC=60°,
∴BD为∠ADC的平分线,
∵MG⊥AE于G,MH⊥DC于H,
∴MG=MH,
∵BF⊥AE,MG⊥AE,
∴BF∥MG,
∴△MGD∽△BFD,
∴,
∵△ABD为等边三角形,BF⊥AD,
∴AF=DF=2.5,
∴BF=,
∵MB=t,
∴MD=5-t,
∴,
解得:,
∴MH=,
∴S△AMD=,
S△MDN=,
∵NI⊥DE,∠CED=90°,
∴NI∥CE,
∴△DNI∽△DCE,
∴即,
∴解得NI=,
∴S△DEN=,
∴S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5);
(4)
过点M作MK⊥BC于K,,过点C作CS∥MN,交DB延长线于S,
∵∠KBM=60°,
∴∠KMB=90°-60°=30°,
∴BK=,MK=,
∴MC,
∵使N在∠CMD的角平分线上,
∴∠CMN=∠DMN,
∵MN∥CS,
∴∠S=∠DMN,∠SCM=∠CMN,
∴∠S=∠SCM,
∴MS=MC,
∵MN∥CS,
∴
∴即,
整理得:,
两函数的交点,
用描点法画函数图像,
列表
t
0
1
1.145
Y=8t3
0
4
8
12.009
t
1
1.15
1.24
Y=5(3t-5)2
20
12.0125
8.19
0
Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,
∴t≈1.148时,两函数值相等,
∴是存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【点睛】
本题考查等边三角形性质,平行线判定,三点共线,对顶角,三角形相似,三角形面积函数,勾股定理,角平分线定理,列表法函数式图形,利用图像求方程的解是解题关键.
4、y=﹣x2﹣2x+3
【解析】
【分析】
根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.
【详解】
解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),
设抛物线的解析式为:y=a(x+3)(x﹣1),
代入点(0,3),
则3=a(0+3)(0﹣1),
解得:a=﹣1,
则抛物线的解析式为:y=﹣(x+3)(x﹣1),
整理得到:y=﹣x2﹣2x+3.
【点睛】
本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.
5、 (1)经过,理由见解析
(2)n=﹣m2﹣6m.
(3)4或6
【解析】
【分析】
(1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
(2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
(3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
(1)
解:经过,
把点(﹣2,4)代入y=x2+bx+3b中得:
4﹣2b+3b=4,
解得b=0,
∴此函数表达式为:y=x2,
当x=2时,y=4,
∴图象经过点(2,4);
(2)
解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
∴﹣=m,=n,
∴b=﹣2m,
把b=﹣2m代入=n得n==﹣m2﹣6m.
即n关于m的函数解析式为n=﹣m2﹣6m.
(3)
把x=0代入y=x2+bx+3b得y=3b,
∵抛物线不经过第三象限,
∴3b≥0,即b≥0,
∵y=x2+bx+3b=(x+)2﹣+3b,
∴抛物线顶点(﹣,﹣+3b),
∵﹣≤0,
∴当﹣+3b≥0时,抛物线不经过第三象限,
解得b≤12,
∴0≤b≤12,﹣6≤﹣≤0,
∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
把x=1代入y=x2+bx+3b得y=1+4b,
当36﹣3b﹣(﹣+3b)=16时,
解得b=20(不符合题意,舍去)或b=4.
当1+4b﹣(﹣+3b)=16时,
解得b=6或b=﹣10(不符合题意,舍去).
综上所述,b=4或6.
【点睛】
本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试精品同步达标检测题,共36页。试卷主要包含了已知点,根据表格对应值等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题,共35页。
这是一份初中冀教版第30章 二次函数综合与测试精品课时练习,共29页。试卷主要包含了下列函数中,随的增大而减小的是,抛物线y=﹣2,二次函数图像的顶点坐标是等内容,欢迎下载使用。