开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数达标测试试题

    2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数达标测试试题第1页
    2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数达标测试试题第2页
    2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数达标测试试题第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第30章 二次函数综合与测试精品同步达标检测题

    展开

    这是一份2020-2021学年第30章 二次函数综合与测试精品同步达标检测题,共35页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
    A.x=-3 B.x=-1 C.x=2 D.x=3
    2、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )

    A.14 B.11 C.6 D.3
    3、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    4、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    5、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )

    A.2 B.3 C.4 D.5
    6、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为(  )
    A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
    7、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.

    A.1 B.2 C.3 D.4
    8、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A. B.
    C. D.
    9、一次函数与二次函数的图象交点(  )
    A.只有一个 B.恰好有两个
    C.可以有一个,也可以有两个 D.无交点
    10、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.

    2、抛物线的对称轴是直线,则它的顶点坐标为______
    3、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______
    x
    ﹣1


    c
    c


    d

    4、已知二次函数,当自变量x分别取1、4、5时,对应的函数值分别为,,,则,,的大小关系是________(用“<”号连接).
    5、如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c过点(﹣1,﹣4),则下列结论:①对于任意的x=m,均有am2+bm+c≥﹣6;②ac>0;③若点(),(,y2)在抛物线上,则y1>y2;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1;⑤b﹣6a=0;其中正确的有_______(填序号).

    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数的图像经过点,,.
    (1)求二次函数的表达式;
    (2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
    (3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
    2、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
    (1)求证:b=0;
    (2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
    ①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
    ②求的值.
    3、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.

    (1)求抛物线的解析式;
    (2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
    4、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
    (1)求点C的坐标和抛物线的解析式;
    (2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
    (3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.
    5、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).

    (1)当为直角三角形时,求的面积
    (2)如图,当时,过点P作轴于点Q,求BQ的长.
    (3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
    【详解】
    解:一元二次方程的两个根分别是和5,
    则二次函数图象与轴的交点坐标为、,
    根据函数的对称性,函数的对称轴为直线,
    故选:C.
    【点睛】
    本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
    2、B
    【解析】
    【分析】
    首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
    【详解】
    解:,
    抛物线顶点的坐标为,

    点的横坐标为,
    把代入,得到,


    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
    3、C
    【解析】
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    4、C
    【解析】
    【分析】
    先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
    【详解】
    解:抛物线的对称轴为:直线,
    ∵,
    当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
    5、B
    【解析】
    【分析】
    由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
    【详解】
    解:∵对称轴是直线x=1,且经过点(0,2),
    ∴左同右异ab<0,c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴b2-4ac>0,所以②正确;
    ∵抛物线对称轴是直线x=1,
    ∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∴9a+3b+c<2,所以③正确;
    ∵对称轴为x=1,
    ∴=1,即b=-2a,
    ∵x=-1时,y=a-b+c>0,
    ∴3a+c>0,所以④错误;
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
    ∴y1<y3<y2,所以⑤不正确;
    故选:B.
    【点睛】
    本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
    6、A
    【解析】
    【分析】
    按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
    【详解】
    解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
    故选:A.
    【点睛】
    本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
    7、C
    【解析】
    【分析】
    由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
    【详解】
    解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,

    故①符合题意;
    二次函敞的图象过点,结合图象可得:
    在抛物线上,
    抛物线的对称轴为:


    故②符合题意;
    二次函敞的顶点坐标为:结合图象可得:


    故③不符合题意;
    当时,


    又由图象可得:时,

    解得:

    故④符合题意;
    综上:符合题意的有:①②④
    故选C
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
    8、B
    【解析】
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    9、B
    【解析】
    【分析】
    联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
    【详解】
    解:联立一次函数和二次函数的解析式可得:

    整理得:

    有两个不相等的实数根
    与的图象交点有两个
    故选:B.
    【点睛】
    本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
    10、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    二、填空题
    1、##
    【解析】
    【分析】
    分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
    【详解】
    解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,

    可知:顶点B(9,12),抛物线经过原点,
    设抛物线的解析式为y=a(x-9)2+12,
    将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
    故抛物线的解析式为:y=-(x−9)²+12,
    ∵PC=12,=1:2,
    ∴点C的坐标为(12,0),AC=6,
    即可得点A的坐标为(12,6),
    当x=12时,y=−(12−9)²+12==CE,
    ∵E在A的正上方,
    ∴AE=CE-AC=-6=,
    故答案为:.
    【点睛】
    本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
    2、
    【解析】
    【分析】
    根据顶点坐标公式求得横坐标等于2,即可求得的值,进而求得顶点坐标.
    【详解】
    抛物线的对称轴是直线

    即抛物线解析式为
    当时,
    它的顶点坐标为
    【点睛】
    本题考查了二次函数的性质,待定系数法求解析式,求得的值是解题的关键.
    3、 1 3
    【解析】
    【分析】
    根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.
    【详解】
    解由二次函数的性质可得的对称轴为y轴,故由表可得,
    ∴m=1;
    ∵二次函数的对称轴为y轴,
    ∴d=c+3,
    ∴3,
    故答案为:1,3.
    【点睛】
    此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.
    4、y1<y2<y3
    【解析】
    【分析】
    利用二次函数图象上点的坐标特征可分别求出y1,y2,y3的值,结合a>0,即可得出a+c<4a+c<9a+c,即y1<y2<y3.
    【详解】
    解:当x=1时,y1=a(1-2)2+c=a+c;
    当x=4时,y2=a(4-2)2+c=4a+c;
    当x=5时,y3=a(5-2)2+c=9a+c.
    ∵a>0,
    ∴a+c<4a+c<9a+c,
    ∴y1<y2<y3.
    故答案为:y1<y2<y3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y1,y2,y3的值是解题的关键.
    5、①④⑤
    【解析】
    【分析】
    根据二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合进行判断即可.
    【详解】
    解:∵抛物线y=ax2+bx+c的顶点为(﹣3,﹣6),
    ∴当x=﹣3时,y最小值=﹣6,
    ∴对于任意的x=m,其函数值y=am2+bm+c≥﹣6,
    因此①正确;
    ∵开口向上,
    ∴a>0,
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴ac<0,
    因此②不正确;
    ∵点(),(,y2)在对称轴右侧的抛物线上,根据在对称轴右侧,y随x的增大而增大,
    ∴y1<y2,
    因此③不正确;
    ∵抛物线y=ax2+bx+c过点(﹣1,﹣4),由对称轴为x=﹣3,根据对称性可知,抛物线y=ax2+bx+c还过点(﹣5,﹣4),
    ∴当y=﹣4时,即方程ax2+bx+c=﹣4有两个不相等的实数根﹣1和﹣5,
    因此④正确;
    ∵对称轴x=﹣=﹣3,
    ∴b﹣6a=0,
    因此⑤正确;
    综上所述,正确的结论有①④⑤,
    【点睛】
    本题考查了二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合,掌握二次函数的图象与性质是解题的关键.
    三、解答题
    1、 (1)
    (2)18
    (3)1或5
    【解析】
    【分析】
    (1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;
    (2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;
    (3)观察抛物线的图像可直接得到结果.
    (1)
    解:(1)设二次函数的表达式为(,,为常数,),
    由题意知,该函数图象经过点,,,得

    解得,
    ∴二次函数的表达式为.
    (2)
    解:∵
    当y=0时,
    解得:x1=1,x2=5
    ∴点A坐标为(1,0)、点B坐标为(5,0);
    当x=0时,y=-5,
    ∴点C坐标为(0,-5);
    把化为y=-(x-3)2+4
    ∴点P坐标为(3,4);
    由题意可画图如下:

    ∴S四边形ACBP=S△ABP+S△ABC
    =
    =18,
    故答案是:18;
    (3)
    由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.
    故:m=1或.
    【点睛】
    本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.
    2、 (1)见解析
    (2)①2;②2.
    【解析】
    【分析】
    (1)利用根与系数的关系即可证明b=0;
    (2)①设出P点坐标,然后令c=t²,然后表示出A、B的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出D、E的坐标,代入计算即可求解.
    (1)
    解:设方程ax2+bx+c=0两根为x1,x2,
    ∵抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,且OA=OB,
    ∴x1=-x2,即x1+x2=0,
    ∵x1+x2=-,
    ∴-=0,
    ∵a<0,
    ∴b=0;
    (2)
    解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2,
    解方程-x2+t2=0,得:x1=t,x2=-t,
    ∴A(-t,0),B(t,0),
    设点P的坐标为(p,-p2+ t2),
    设直线PB的解析式为y=kx+m,
    ∴,解得:,
    ∴直线PB的解析式为y=x+,
    ∵AQ∥BP,
    设直线AQ的解析式为y=x+n,
    把A(-t,0)代入得:n=
    ∴直线AQ的解析式为y=,
    联立y=和y=-x2+ t2得:,
    整理得:,
    解得x1=-t,x2=p+2t,
    ∴点Q的横坐标为p+2t,
    ∴Q,P两点横坐标的差为p+2t-p=2t=2;
    ②令c=t2,a=-s²,抛物线的解析式为y=-s²x2+t2,
    解方程-s²x2+t2=0,得:x1=,x2=-,
    ∴A(-,0),B(,0),C(0,t2),
    设点P的坐标为(p,-s²p2+ t2),
    同理求得直线PB的解析式为y=x+,
    直线AQ的解析式为y=,
    令x=0,则y=,
    即点E的坐标为(0,),
    同理求得直线AP的解析式为y=,
    令x=0,则y=,
    即点D的坐标为(0,),
    ∴OD=,OE=,OC=,
    ∴.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.
    3、 (1)
    (2)
    【解析】
    【分析】
    (1)根据二次函数的对称轴及过一点,建立等式进行求解;
    (2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
    (1)
    解:对称轴为,
    把代入得:,
    解得:,
    抛物线的解析式为;
    (2)
    解:设点D的坐标为,
    点D在BC的下方,





    是等腰三角形,

    轴,
    E的坐标为,



    当时,的最大值是.
    【点睛】
    本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
    4、 (1),
    (2)或
    (3)
    【解析】
    【分析】
    (1)对于,当时,,求得,解方程组即可得到结论;
    (2)根据,,得到,连接,设的中点为,求得,,得到直线的解析式为,设,解方程即可得到结论;
    (3)由(1)知,抛物线的对称轴为直线,根据轴对称的性质得到,,当,,三点共线时,最小,即最小,求得直线的解析式为,把代入即可得到结论.
    (1)
    解:对于,当时,,

    抛物线为常数,交轴于点和点,

    解得,
    抛物线的解析式为;
    (2)
    解:,,

    连接,设的中点为,

    ,,
    直线的解析式为,

    点在直线上,
    设,
    点是抛物线上一点,

    解得,
    点的坐标为,或,;
    (3)
    解:由(1)知,抛物线的对称轴为直线,
    点与点关于对称,点在直线上,
    ,,
    当,,三点共线时,最小,即最小,
    设直线的解析式为,

    解得,
    直线的解析式为,
    把代入得,,

    当最小时,求点的坐标.
    【点睛】
    本题是二次函数的综合题,考查了待定系数法求函数的解析式以及二次函数的性质,轴对称最短路线问题,解题的关键是熟练掌握待定系数法求函数的解析式.
    5、 (1)4
    (2)2
    (3)或m=
    【解析】
    【分析】
    (1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
    (2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
    (3)先说明∠ABC=45°,然后分三种情况解答即可.
    (1)
    解:由抛物线开口向上,则m>0
    令x=0,则y=-2,即C点坐标为(0,-2),OC=2
    令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
    ∴OA=2,OB=m
    ∴AB=m+2
    由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
    ∵当为直角三角形时,仅有∠ACB=90°
    ∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
    ∴AB=m+2=4
    ∴的面积为:·AB·OC=×4×2=4.
    (2)
    解:设BC所在直线的解析式为:y=kx+b
    则 ,解得
    ∴BC所在直线的解析式为y=x-2
    设直线AP的解析式为y=x+c
    则有:0=×(-2)+c,即c=
    ∴线AP的解析式为y=x+
    联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
    ∴点P的纵坐标为:
    ∴点P的坐标为(m+2,)
    ∴OQ=m+2
    ∴BQ=OQ-OB= m+2-m=2.
    (3)
    解:∵点P为抛物线上一动点(点P不与点C重合).
    ∴设P(x,)
    ∵在△ABC中,∠BAC=45°
    ∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
    ①a.若△ABC∽△BAP

    又∵BP=AC
    ∴△ABC∽△BAP不符合题意;

    b. 若△ABP∽△BAC

    过P作PQ⊥x轴于点Q,则∠PQB=90°
    ∴∠BPQ=90°-∠PBQ=45°
    ∴PQ=BQ=m-x
    由于PQ=


    ∴x-m=0或
    ∴x=m(舍去),x=-m-2
    ∴BQ=m-(-m-2)=2m+2


    ∴m2-4m-4=0,解得:m=或m=(舍去)
    ∴m=;

    ②当∠PAB=∠BAC=45°时,分两种情况讨论:
    a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
    b. 若△ABP∽△BAC,则 ,
    过P作PQ⊥x轴于点Q,则∠PQA=90°
    ∴∠APQ=90°-∠PAB=45°
    ∴PQ=AQ=x+2
    由于PQ=


    ∴x+2=0或
    ∴x=-2(舍去),x=2m
    ∴AQ= =2m+2


    ∴m2-4m-4=0,解得:m=(舍去)或m=
    ∴m=;

    ③当∠APB=∠BAC=45°时,分两种情况讨论:
    a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
    ∵∠MAB≠∠PAB,
    ∴∠PAB≠∠ABC,
    ∴△PAB与△BAC不相似;

    b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
    ∵∠PBA≠∠NBA,
    ∴∠PBA≠∠CBA,
    ∴△PAB与△BAC不相似;

    综上,m的值为m=或m=.
    【点睛】
    本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习题,共30页。

    冀教版九年级下册第30章 二次函数综合与测试优秀习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀习题,共27页。试卷主要包含了下列函数中,二次函数是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题,共35页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map