![2021-2022学年度冀教版九年级数学下册第三十章二次函数同步测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12734536/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版九年级数学下册第三十章二次函数同步测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12734536/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版九年级数学下册第三十章二次函数同步测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12734536/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试精品测试题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试精品测试题,共33页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,二次函数是( )A.y=﹣3x+5 B.y=x(4x﹣3)C.y=2(x+4)2﹣2x2 D.y=2、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A. B.C. D.3、已知,是抛物线上的点,且,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则4、对于二次函数,下列说法正确的是( )A.若,则y随x的增大而增大 B.函数图象的顶点坐标是C.当时,函数有最大值-4 D.函数图象与x轴有两个交点5、已知二次函数的图象经过,,则b的值为( )A.2 B. C.4 D.6、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.7、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是( )A.或6 B.或6 C.或6 D.或8、在抛物线的图象上有三个点,,,则、、的大小关系为( )A. B. C. D.9、已知,是抛物线上的点,且,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则10、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )A.y≤3 B.y≤6 C.y≥-3 D.y≥6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.2、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)3、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)4、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,若点P(2023,m)在某段抛物线上,则m=_____.5、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤(为实数且).其中正确的结论有______(只填序号).三、解答题(5小题,每小题10分,共计50分)1、已知在平面直角坐标系中,拋物线经过点、,顶点为点.(1)求抛物线的表达式及顶点的坐标;(2)联结,试判断与是否相似,并证明你的结论;(3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.2、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求,的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.3、已知二次函数的图像经过点(1,4)和点(2,3).(1)求这个二次函数的表达式;(2)求该二次函数图像的顶点坐标.(3)当x在什么范围内时,y随x的增大而减小?4、如图,抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.(1)求此抛物线的解析式;(2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;(3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=16时,直接写出△BCP的面积.5、图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m.以O为原点,OA所在直线为x轴建立直角坐标系,若点P的坐标为.(1)求拱桥所在抛物线的函数表达式;(2)因降暴雨水位上升1m,此时水面宽为多少?(结果保留根号) -参考答案-一、单选题1、B【解析】【分析】根据二次函数的定义逐个判断即可.【详解】解:A.函数是一次函数,不是二次函数,故本选项不符合题意;B.是二次函数,故本选项符合题意;C.是一次函数,不是二次函数,故本选项不符合题意;D.不是二次函数,故本选项不符合题意;故选:B.【点睛】本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.2、D【解析】【分析】分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.【详解】解:∵四边形ABCD是矩形,∴AD=BC=4,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=8,当点P在AD上时,PE⊥BQS△PBQ =·BQ·PE=•(8-2t)•(4-t)•sin60°=(4-t)2(0<t<4),当点P在线段BD上时,QE’⊥BPS△PBQ=·BP·QE’=[12-2(t-4)]•(t-)sin60°=-t2+t-16(4<t≤8),观察图象可知,选项D满足条件,故选:D.【点睛】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.3、C【解析】【分析】先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.【详解】解:抛物线的对称轴为:直线,∵,当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.4、A【解析】【分析】先将二次函数的解析式化为顶点式,再逐项判断即可求解.【详解】解:∵,且 ,∴二次函数图象开口向下,∴A、若,则y随x的增大而增大,故本选项正确,符合题意;B、函数图象的顶点坐标是,故本选项错误,不符合题意;C、当时,函数有最大值-2,故本选项错误,不符合题意;∵ ,∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.5、C【解析】【分析】由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.【详解】解: 二次函数的图象经过,, 二次函数图象的对称轴为: 解得: 故选C【点睛】本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.6、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.7、C【解析】【分析】表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.【详解】解:∵y=-x2+mx,∴抛物线开口向下,抛物线的对称轴为x=-,①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,∴-(-2)2-2m=5,解得:m=-;②当≥1,即m≥2时,当x=1时,函数最大值为5,∴-12+m=5,解得:m=6.③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,∴-()2+m•=5解得m=2(舍去)或m=-2(舍去),综上所述,m=-或6,故选:C.【点睛】本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.8、C【解析】【分析】把三个点,,的横坐标代入解析式,然后比较函数值大小即可.【详解】解:把三个点,,的横坐标代入解析式得,;;;所以,,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.9、A【解析】【分析】根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向【详解】解:∵的对称轴为,且∴若,则离对称轴远,则抛物线的开口朝下,即,故A正确若,则离对称轴远,则抛物线的开口朝上,即,故C不正确对于B,D选项不能判断的符号故选A【点睛】本题考查了二次函数图象的性质,掌握的性质是解题的关键.10、C【解析】【分析】根据图像经过三点求出函数表达式,再根据最值的求法求出结果.【详解】解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),∴,解得:,∴函数表达式为y=x2-2x-2,开口向上,∴函数的最小值为=,即y≥-3,故选C.【点睛】本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.二、填空题1、##【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.【详解】解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=a(x-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,故抛物线的解析式为:y=-(x−9)²+12,∵PC=12,=1:2,∴点C的坐标为(12,0),AC=6,即可得点A的坐标为(12,6),当x=12时,y=−(12−9)²+12==CE,∵E在A的正上方,∴AE=CE-AC=-6=,故答案为:.【点睛】本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.2、【解析】【分析】根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.【详解】∵与x轴交于A,B两点(点A在点B左侧),令,则,解得:,.∴A点坐标为(-1,0).∵直线经过点A,∴,解得:,∴该直线解析式为.当时,直线解析式为,令,则,∴的坐标为(0,n).联立,即,解得:,.∴的横坐标为n+1.将代入中,得:,∴的坐标为().∴故答案为:.【点睛】本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.3、向上【解析】【分析】根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.【详解】∵a=2>0,∴二次函数y=2x2+1图象的开口方向是向上,故答案为:向上.【点睛】本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.4、﹣1【解析】【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(2023,m)为抛物线C1012的顶点,从而得到结果.【详解】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);…C1012顶点坐标为(2023,﹣1),A1012(2024,0);∴m=﹣1.故答案为:﹣1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.5、③④⑤【解析】【分析】先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 即 可判断④,当时,,当, 此时: 可判断⑤,从而可得答案.【详解】解:由二次函数的图象开口向下可得: 二次函数的图象与轴交于正半轴,可得 二次函数的对称轴为: 可得 所以: 故①不符合题意;由图象可得:在第三象限, 故②不符合题意;由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间, 点在第一象限, 故③符合题意;在第四象限, 抛物线的对称轴为: 故④符合题意; 当时,,当, 此时: 故⑤符合题意;综上:符合题意的有:③④⑤,故答案为:③④⑤.【点睛】本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.三、解答题1、 (1),顶点坐标为:;(2),证明见解析;(3)存在点P,,理由见解析.【解析】【分析】(1)根据题意设抛物线解析式为:,将点C代入解得,代入抛物线可得函数解析式;将一般式化为顶点式即可确定顶点坐标;(2)结合图象,分别求出的三边长,的三边长,由勾股定理逆定理可得为直角三角形,且两个三角形的三条边对应成比例,即可证明;(3)设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,可得,,利用等腰直角三角形的性质可得,,再由勾股定理可得,设,根据直角坐标系中两点之间的距离利用勾股定理可得,同理可得=,利用代入消元法解方程即可确定点F的坐标,然后求出直线AF的直线解析式,联立抛物线解析式求交点坐标即可得.(1)解:抛物线经过点,,,设抛物线解析式为:,将点C代入可得:,解得:,∴,∴顶点坐标为:;(2)解:如图所示:为直角三角形且三边长分别为:,,,的三边长分别为:,,,∴,∴为直角三角形,∵,∴;(3)解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:∴,,∵,∴,∴为等腰直角三角形,∴,,∴,即解得:,设,∴,,∴,整理得:①,=,即②,将①代入②整理得:,解得:,,∴,,∴或(不符合题意舍去),∴,,设直线FA解析式为:,将两个点代入可得:,解得:,∴,∴联立两个函数得:,将①代入②得:,整理得:,解得:,,当时,,∴.【点睛】题目主要考查待定系数法确定函数解析式,相似三角形得判定和性质,中垂线的性质,等腰直角三角形的性质,勾股定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.2、 (1)(2)(3)或3、 (1)(2)(3)当时,y随x的增大而减小【解析】【分析】(1)将点(1,4)和(2,3)代入中,得,进行计算即可得;(2)将配方得,即可得;(3)根据二次函数的性质得即可得.(1)解:将点(1,4)和(2,3)代入中,得解得则该二次函数表达式为.(2)解:配方得:,则顶点坐标为(1,4).(3)解:根据二次函数的性质得,当时,y随x的增大而减小.【点睛】本题考查了二次函数,解题的关键是掌握二次函数的性质.4、 (1)(2)(3)①;②【解析】【分析】(1)将点代入解析式,待定系数法求二次函数解析式即可;(2)根据两点求得直线的解析式,进而求得的长,根据的范围分类讨论求得的值,进而得到矩形周长与的二次函数关系式,根据二次函数的性质求得最小值即可;(3)①根据抛物线解析式求得顶点坐标,进而根据的纵坐标与的纵坐标求得最大与最小值求得其差即可,根据的纵坐标大于3和小于等于3求解即可;②过点作轴交于点,过点作于点,根据①中的范围可得,当时,,进而求得点的坐标,根据计算即可(1)解:∵抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),∴令,则,将点代入得解得则抛物线的解析式为(2)点P是抛物线上的一个动点,其横坐标为m,且m>0.点Q是直线AC上的一个动点,且位于x轴的上方,PQ∥y轴点在点上方,,,设直线的解析式为解得直线的解析式为设,则抛物线的解析式为对称轴为,顶点坐标为,根据对称性可得设矩形的周长为,①当时,,不能构成矩形,②当时, 则当时,③当时,则对称轴为则当时,不存在最小值综上所述,矩形的周长的最小值为(3)①抛物线的解析式为对称轴为,顶点坐标为,又当时,解得,当时,当时,②当时,当时,解得则如图,过点作轴交于点,过点作于点,抛物线的解析式为令,则解得【点睛】本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.5、 (1)(2)【解析】【分析】(1)利用待定系数法求解可得;(2)在所求函数解析式中求出时的值即可得.(1)解:设抛物线的解析式为,将点、代入,得:,解得:,所以抛物线的解析式为;(2)当时,,即,解得:,则水面的宽为.【点睛】本题主要考查二次函数的应用,解题的关键是将实际问题转化为二次函数的问题求解,并熟练掌握待定系数法求函数解析式.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试精品达标测试,共31页。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀随堂练习题,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份初中第30章 二次函数综合与测试精品当堂检测题,共34页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)