![2021-2022学年冀教版九年级数学下册第三十章二次函数专项攻克试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734563/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数专项攻克试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734563/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数专项攻克试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734563/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试精品课时练习
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共33页。
九年级数学下册第三十章二次函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
2、一次函数与二次函数的图象交点( )
A.只有一个 B.恰好有两个
C.可以有一个,也可以有两个 D.无交点
3、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )
A.① B.② C.③ D.②③
6、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
7、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
8、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
9、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
10、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.
2、已知二次函数,当时,函数的值是_________.
3、若抛物线与轴交于原点,则的值为 __.
4、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
5、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).
(1)求此抛物线的解析式;
(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
2、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
(1)求该抛物线的函数表达式和顶点坐标;
(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
①求直线BC的解析式;
②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
3、已知二次函数的图像经过点,,.
(1)求二次函数的表达式;
(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
4、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:
x
…
0
1
2
3
…
y
…
0
0
…
(1)求该二次函数的表达式;
(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.
5、在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图1,点D是OC的中点,P是抛物线上位于第一象限的动点,连接PD,PB、BD,求面积的最大值及此时点P的坐标;
(3)如图2,将原抛物线水平向右平移,使点A落在点处,点M是原抛物线对称轴上任意一点,在平移后的新抛物线上确定一点N,使得以点B、C、M、N为顶点的四边形为平行四边形,直接写出所有符合条件的点N的坐标.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
【详解】
解:由题意得,
当h=3时,,
解得,
∴球不低于3米的持续时间是1-0.6=0.4(秒),
故选:A.
【点睛】
此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
2、B
【解析】
【分析】
联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
【详解】
解:联立一次函数和二次函数的解析式可得:
整理得:
有两个不相等的实数根
与的图象交点有两个
故选:B.
【点睛】
本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
3、A
【解析】
【分析】
按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
【详解】
解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
4、D
【解析】
【分析】
根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
【详解】
解:由势力的线与y轴正半轴相交可知c>0,
对称轴x=-<0,得b
相关试卷
这是一份2020-2021学年第30章 二次函数综合与测试优秀精练,共31页。试卷主要包含了抛物线的对称轴是,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共27页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)