![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734564/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734564/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734564/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试优秀练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共30页。
九年级数学下册第三十章二次函数课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数与二次函数的图象交点( )
A.只有一个 B.恰好有两个
C.可以有一个,也可以有两个 D.无交点
2、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )
A.4 B.3 C.2 D.1
3、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
4、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
5、已知二次函数的图象上有三点,,,则、、的大小关系为( )
A. B. C. D.
6、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
7、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
A. B. C. D.
8、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③ B.②④ C.①②③ D.②③④
9、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
10、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.
2、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
3、抛物线的顶点坐标是______.
4、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
5、抛物线y=﹣2(x﹣1)2+4的最高点坐标是_____.
三、解答题(5小题,每小题10分,共计50分)
1、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
(1)求的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
(注:利润=(销售单价-进价)×销售量)
2、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).
(1)抛物线的对称轴为x= ;抛物线与y轴的交点坐标为 ;
(2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
(3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
3、已知二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0).
(1)求这个二次函数的表达式.
(2)将x轴上的点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,若点P1,P2均在该二次函数图象上,求n的值.
4、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点A(1,0)、B(4,0),与y轴交于点C. 已知点E(0,3)、点F(4,t)(t>3),点M是线段EF上一动点,过M作x轴的垂线交抛物线于点N.
(1)直接写出二次函数的表达式:
(2)若t=5,当MN最大时,求M的坐标;
(3)在点M从点E运动至点F的过程中,若线段MN的长逐渐增大,求t的取值范围
5、如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
【详解】
解:联立一次函数和二次函数的解析式可得:
整理得:
有两个不相等的实数根
与的图象交点有两个
故选:B.
【点睛】
本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
2、B
【解析】
【分析】
看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
【详解】
∵抛物线与x轴有两个不同的交点,
∴﹣4ac>0;
故①正确;
∵抛物线开口向下,与y轴交于正半轴,>0,
∴a<0,b>0, c>0,
∴abc<0;
故②正确;
∵,
∴4a+b=0,
故③正确;
x= -2时,y=4a-2b+c,
根据函数的增减性,得4a-2b+c<0;
故④错误.
故选B.
【点睛】
本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
3、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
4、C
【解析】
【分析】
利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
【详解】
解: 抛物线y=mx2+4mx+m﹣2(m≠0),
抛物线的对称轴为: 故①符合题意;
当时,
所以抛物线与轴有两个交点,故②不符合题意;
当时,抛物线的开口向上,如图,
则关于的对称点为: 而
故③符合题意;
当时,抛物线的开口向下,如图,
同理可得:由
则或 故④符合题意,
综上:符合题意的有:①③④
故选:C
【点睛】
本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
5、A
【解析】
【分析】
分别求出、、的大小,再进行判断即可.
【详解】
解:
A、故选项正确,符合题意;
B、故选项错误,不符合题意;
C、故选项错误,不符合题意;
D、故选项错误,不符合题意.
故选:A.
【点睛】
此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
6、A
【解析】
【分析】
根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
【详解】
解:由题意得,
当h=3时,,
解得,
∴球不低于3米的持续时间是1-0.6=0.4(秒),
故选:A.
【点睛】
此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
7、D
【解析】
【分析】
由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
【详解】
解:由已知二次项系数等于1的一个二次函数,
其图象与x轴交于两点(m,0),(n,0),
所以可设交点式y=(x-m)(x-n),
分别代入,,
∴
∵0<m<n<3,
∴0<≤4 ,0<≤4 ,
∵m<n,
∴ab不能取16 ,
∴0<ab<16 ,
故选D
【点睛】
本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
8、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
9、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
10、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
二、填空题
1、
【解析】
【分析】
如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.
【详解】
解:建立平面直角坐标系如图:
根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,
设抛物线的的解析式为y=ax2+bx+c,把上面信息代入得,
,
解得,,
抛物线解析式为:,
把代入得,;
故答案为:
【点睛】
本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.
2、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
3、 (2,-1)
【解析】
【分析】
先把抛物线配方为顶点式,再确定顶点坐标即可.
【详解】
解:,
∴抛物线的顶点坐标为(2,-1).
故答案为(2,-1).
【点睛】
本题考查抛物线的顶点坐标,掌握抛物线配方为顶点式的方法是解题关键.
4、2
【解析】
【分析】
首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.
【详解】
解:∵
∴,代入得:
∴抛物线的顶点坐标为
∵当时,即,
解得:,
∴抛物线与x轴两个交点坐标为和
∵的“特征三角形”是等腰直角三角形,
∴,即
解得:.
故答案为:2.
【点睛】
此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.
5、
【解析】
【分析】
根据,顶点坐标是,可得答案.
【详解】
解:抛物线为,
开口向下,则最高点坐标是顶点坐标,
顶点坐标.
故答案为:.
【点睛】
本题考查了二次函数的性质以及顶点式,解题的关键是准确理解顶点式.
三、解答题
1、 (1)的值是500;
(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
【解析】
【分析】
(1)根据利润=(销售单价-进价)×销售量列方程求解即可;
(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
(1)
解:由题意可得,,
解得:,
答:的值是500;
(2)
解:设利润为w元,
由题意:,
,
∵-10
相关试卷
这是一份2020-2021学年第30章 二次函数综合与测试精品当堂检测题,共32页。试卷主要包含了抛物线的顶点为,同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品复习练习题,共25页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课堂检测,共29页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)