终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数综合测评试卷(无超纲)

    立即下载
    加入资料篮
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数综合测评试卷(无超纲)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数综合测评试卷(无超纲)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数综合测评试卷(无超纲)第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试精品课堂检测

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试精品课堂检测,共31页。试卷主要包含了若点A,抛物线的顶点为,对于抛物线下列说法正确的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是(   )
    A.或6 B.或6 C.或6 D.或
    2、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )

    A.2 个 B.3 个 C.4 个 D.5 个.
    3、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    4、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A. B.
    C. D.
    5、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    6、若函数,则当函数y=15时,自变量的值是( )
    A. B.5 C.或5 D.5或
    7、抛物线的顶点为( )
    A. B. C. D.
    8、对于抛物线下列说法正确的是( )
    A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
    9、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )

    A. B. C. D.
    10、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
    2、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)
    3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.
    4、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
    5、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    3、C
    【解析】
    【分析】
    把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
    【详解】
    解:把三个点,,的横坐标代入解析式得,
    ;;;
    所以,,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
    4、C
    【解析】
    【分析】
    此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
    【详解】
    解:∵抛物线的顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
    ∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
    故选:C
    【点睛】
    此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
    5、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    6、D
    【解析】
    【分析】
    根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
    【详解】
    解:当x<3时,
    令2x2-3=15,
    解得x=-3;
    当x≥3时,
    令3x=15,
    解得x=5;
    由上可得,x的值是-3或5,
    故选:D.
    【点睛】
    本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    7、B
    【解析】
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    8、D
    【解析】
    【分析】
    根据二次函数的性质对各选项分析判断即可得解.
    【详解】
    解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
    ∴A选项不正确;
    由抛物线,可知其最小值为-2,∴B选项不正确;
    由抛物线,可知其顶点坐标,∴C选项不正确;
    在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
    故选:D.
    【点睛】
    本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
    9、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
    【详解】
    解:A、由抛物线的开口向上知,
    对称轴位于轴的右侧,

    抛物线与轴交于负半轴,


    故选项正确,不符合题意;
    B、对称轴为直线,得,即,故选项正确,不符合题意;
    C、如图,当时,,,故选项正确,不符合题意;
    D、当时,,
    ,即,故选项错误,符合题意;
    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
    10、C
    【解析】
    【分析】
    抛物线的对称轴为:,根据公式直接计算即可得.
    【详解】
    解:,
    其中:,,,

    故选:C.
    【点睛】
    本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
    二、填空题
    1、x4## x>4或x<-2
    【解析】
    【分析】
    先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
    【详解】
    解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
    ∴5=(-2)2-2×(-2)+b,
    解得:b=-3,
    ∴二次函数解析式y1=x2-2x-3,
    ∴抛物线开口向上,对称轴为x=-=1,
    ∴抛物线过点(4,5),
    ∴符合条件y1>y2的x的范围是x<-2或x>4.
    故答案为:x<-2或x>4.
    【点睛】
    本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
    2、<
    【解析】
    【分析】
    根据二次函数的性质得到抛物线y=(x+1)2的开口向上,对称轴为直线x=﹣1,则在对称轴右侧,y随x的增大而增大.
    【详解】
    解:∵y=(x+1)2,
    ∴a=1>0,
    ∴抛物线开口向上,
    ∵抛物线y=(x+1)2对称轴为直线x=﹣1,
    ∵﹣1<2<3,
    ∴y1<y2.
    故答案为<.
    【点睛】
    本题考查了的性质,求得对称轴是解题的关键.
    3、
    【解析】
    【分析】
    根据“左加右减、上加下减”的平移原则进行解答即可.
    【详解】
    解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为
    故答案为:(或)
    【点睛】
    本题考查了二次函数的平移,掌握函数平移规律是解题的关键.
    4、-1
    【解析】
    【分析】
    将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
    【详解】
    解:
    =
    =
    ∴抛物线顶点坐标为(1,-2),在第四象限,
    又抛物线与轴相交于A,两点.
    ∴抛物线开口向上,即
    设为A,B两点的横坐标,

    ∵线段的长不小于2,





    解得,

    当时,有最小值,最小值为:
    故答案为:-1
    【点睛】
    本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
    5、
    【解析】
    【分析】
    将题目所给两个x代入函数即可得出两个y,再比较大小.
    【详解】
    =2时:
    时:
    1

    相关试卷

    初中数学第30章 二次函数综合与测试精品课堂检测:

    这是一份初中数学第30章 二次函数综合与测试精品课堂检测,共30页。试卷主要包含了二次函数y=a+bx+c,抛物线的对称轴是,对于抛物线下列说法正确的是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试精练:

    这是一份2020-2021学年第30章 二次函数综合与测试精练,共32页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习,共30页。试卷主要包含了若二次函数y=a,抛物线的对称轴是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map