搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节训练练习题(精选含解析)

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节训练练习题(精选含解析)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节训练练习题(精选含解析)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节训练练习题(精选含解析)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试优秀同步测试题

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试优秀同步测试题,共29页。
    九年级数学下册第三十章二次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于的二次函数,当时,的增大而减小,则实数的取值范围是(       A. B. C. D.2、二次函数的图像如图所示,那么点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限3、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,则杯子的高为(     A.14 B.11 C.6 D.34、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,其中.得出结论:①;②;③;④.上述结论正确的有(       )个.A.1 B.2 C.3 D.45、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为(       A. B.C. D.6、如图,在矩形ABCD中,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点PQ在矩形边上的运动速度为每秒1个单位长度,点PQ在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映St之间函数关系的是(       A. B.C. D.7、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是(   )A.或6 B.或6 C.或6 D.8、下列实际问题中的yx之间的函数表达式是二次函数的是(       A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm9、已知二次函数,则关于该函数的下列说法正确的是(       A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象10、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有(       A.2 个 B.3 个 C.4 个 D.5 个.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,抛物线yax﹣1)2+kak为常数)与x轴交于点AB,与y轴交于点CCDx轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.2、如图,在平面直角坐标系中,抛物线轴交于两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于两点;当时,直线分别与轴,抛物线交于两点;……;当为正整数)时,直线分别与轴,抛物线交于两点,则线段长为______.(用含的代数式表示)3、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.4、二次函数 y &#xF03D; 2x2&#xF02B;1 的图象开口方向______.(填“向上”或“向下”)5、已知二次函数的图象经过点,那么a的值为_____.三、解答题(5小题,每小题10分,共计50分)1、已知二次函数yx2-2x-3的图象为抛物线C(1)写出抛物线C的开口方向、对称轴和顶点坐标;(2)当2≤x≤4时,求该二次函数的函数值y的取值范围;(3)将抛物线C先向右平移2个单位长度,得到抛物线C1;再将抛物线C1向下平移1个单位长度,得到抛物线C2,请直接写出抛物线C1C2对应的函数解析式.2、已知抛物线经过,且顶点在y轴上.(1)求抛物线解析式;(2)直线与抛物线交于AB两点.①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;②设直线x轴于点,线段AB的垂直平分线交y轴于点N,当时,求点N纵坐标n的取值范围.3、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,ADMN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;(2)若a=150.求矩形隔离区ABCD面积的最大值.4、如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线,如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m.(1)建立适当平面直角坐标系,确定抛物线解析式;(2)求水流的落地点D到水枪底部B的距离.5、抛物线x轴交和点B,交y轴于点C,对称轴为直线(1)求抛物线的解析式;(2)如图,若点D为线段BC下方抛物线上一点,过点D轴于点E,再过点E于点F,请求出的最大值. -参考答案-一、单选题1、C【解析】【分析】由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.【详解】解:抛物线开口向上,对称轴为时,的增大而减小,时,的增大而减小,解得故选:C.【点睛】本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.2、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出abc的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,a>0,又∵对称轴在y轴右侧,b<0,又∵图象与y轴交于负半轴,c<0,在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出abc的符号是解题的关键.3、B【解析】【分析】首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.【详解】解:抛物线顶点的坐标为点的横坐标为代入,得到故选:B.【点睛】本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.4、C【解析】【分析】由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.【详解】解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴, 故①符合题意; 二次函敞的图象过点,结合图象可得:在抛物线上, 抛物线的对称轴为: 故②符合题意; 二次函敞的顶点坐标为:结合图象可得: 故③不符合题意;时, 又由图象可得:时, 解得: 故④符合题意;综上:符合题意的有:①②④故选C【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.5、C【解析】【分析】此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:∵抛物线的顶点坐标为∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为故选:C【点睛】此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.6、D【解析】【分析】分别求出点PADBD上,利用三角形面积公式构建关系式,可得结论.【详解】解:∵四边形ABCD是矩形,AD=BC=4,∠A=∠C=90°,ADBC∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,BD=2AD=8,当点PAD上时,PEBQS△PBQ =·BQ·PE=•(8-2t)•(4-t)•sin60°=(4-t2(0<t<4),当点P在线段BD上时,QE’BPS△PBQ=·BP·QE’=[12-2(t-4)]•(t-)sin60°=-t2+t-16(4<t≤8),观察图象可知,选项D满足条件,故选:D【点睛】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.7、C【解析】【分析】表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.【详解】解:∵y=-x2+mx∴抛物线开口向下,抛物线的对称轴为x=-①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,∴-(-2)2-2m=5,解得:m=-②当≥1,即m≥2时,当x=1时,函数最大值为5,∴-12+m=5,解得:m=6.③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,∴-()2+m=5解得m=2(舍去)或m=-2(舍去),综上所述,m=-或6,故选:C.【点睛】本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.8、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.9、C【解析】【分析】,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是∴A选项错误;∵二次函数的图象开口向上,对称轴是直线∴当时,的值随值的增大而增大,∴B选项错误;∵当时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.10、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;故选C.【点睛】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2ab的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题1、5【解析】【分析】先求出抛物线y= a(x-1)2+kak为常数)的对称轴,然后根据ABCD均关于对称轴直线x=1对称,分别求出BD点的坐标,即可求出OBCD的长.【详解】解:∵抛物线y=a(x-1)2+kak为常数),∴对称轴为直线x=1,∵点A和点B关于直线x=1对称,且点A(-1,0),∴点B(3,0),OB=3,C点和D点关于x=1对称,且点C(0,a+k),∴点D(2,a+k),CD=2,∴线段OB与线段CD的长度和为5,故答案为5.【点睛】本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+kak为常数)的对称轴为x=1,此题难度不大.2、【解析】【分析】根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.【详解】x轴交于AB两点(点A在点B左侧),,则解得:A点坐标为(-1,0).∵直线经过点A解得:∴该直线解析式为时,直线解析式为,则的坐标为(0,n).联立,即解得:的横坐标为n+1.代入中,得:的坐标为().故答案为:【点睛】本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出的坐标是解答本题的关键.3、【解析】【分析】设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,求出的值即可.【详解】解:设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,即解得故符合条件的点的坐标是:故答案为:【点睛】本题考查的是二次函数图象上点的坐标特点,解题的关键是掌握即二次函数图象上各点的坐标一定适合此函数的解析式.4、向上【解析】【分析】根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.【详解】∵a=2>0,∴二次函数y=2x2+1图象的开口方向是向上,故答案为:向上.【点睛】本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.5、【解析】【分析】把已知点的坐标代入抛物线解析式可得到的值.【详解】解:二次函数的图象经过点解得:故答案为:【点睛】本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.三、解答题1、 (1)开口向上,对称轴为直线,顶点坐标为(2)(3)【解析】【分析】(1)将二次函数化为顶点式,由此可得答案;(2)分别求出时,时的函数值,根据函数的增减性解答;(3)根据二次函数的平移规律解答.(1)解:∵,∴抛物线C的开口向上.∴抛物线C的对称轴为直线,顶点坐标为(2)解:当时,yx的增大而增大;∵当时,;当时,∴函数值y的取值范围是(3)解:抛物线对应的函数解析式为抛物线对应的函数解析式为【点睛】此题考查了将二次函数化为顶点式,二次函数的性质,利用函数的增减求出函数值的取值范围,二次函数的平移规律,熟记各知识点是解题的关键.2、 (1)(2)①c的值为-1,②【解析】【分析】(1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;(2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设.把代入中,得,根与系数的关系可得由勾股定理得,根据垂直平分线的性质可得,化简可得,进而可得当时,nk的增大而减小,由可得,进而求得的取值范围(1)∵抛物线经过,且顶点在y轴上,,解得∴抛物线解析式为.(2)①依题意得:当时,轴,与∠PBA都不可能为90°,∴只能是,∴点PAB的对称轴(y轴)上,∴点P为抛物线的顶点,即不妨设点A在点B的左侧,直线y轴交于点C∴点代入中,得:解得:(不合题意,舍去).c的值为-1.②设代入中,得,由根与系数的关系可得由勾股定理得∵点NAB的垂直平分线上,化简得∵直线x轴相交,∴点AB不关于y轴对称,,即.代入,得.由反比例函数的性质,可知:当时,在二次函数中,,对称轴为直线∴当时,nk的增大而减小,.【点睛】本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.3、 (1)AD=20米;(2)当x=100时,S最大=5000米2【解析】【分析】(1)设AD=xAB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;(2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=然后配方为S即可.(1)解:设AD=xAB=(200-x)÷2=100-∴根据题意得:整理得解得:a=30,AD=20米;(2)解:矩形隔离区ABCD面积用S表示,S=a=150>100,∴当x=100时,S最大=5000米2【点睛】本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.4、 (1)图解析,y=﹣1.6(x﹣1)2+3.6(2)水流的落地点D到水枪底部B的距离为2.5m.【解析】【分析】(1)依题意,建立直角坐标系(见详解1),依据二次函数的顶点式进行求解即可;(2)结合(1)中的解析式,将距离问题转变为二次函数与横坐标轴的交点问题,求解;(1)由题知,如图,以BD所在直线为x轴、AB所在直线为y轴建立直角坐标系,由题意知,抛物线的顶点为、点设抛物线的解析式为将点代入,得:则抛物线的解析式为(2)结合(1),可知水流的落地点D到水枪底部B的距离转换为,与横坐标的交点问题;∴ 当y=0时,有解得:(舍),答:水流的落地点D到水枪底部B的距离为2.5m【点睛】本题主要考查二次函数解析式的求解及其实际应用,关键在熟练应用解析结合实际问题;5、 (1)(2)【解析】【分析】(1)根据二次函数的对称轴及过一点,建立等式进行求解;(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.(1)解:对称轴为代入得:解得:抛物线的解析式为(2)解:设点D的坐标为DBC的下方,是等腰三角形,轴,E的坐标为时,的最大值是【点睛】本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式. 

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试优秀当堂达标检测题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀当堂达标检测题,共34页。试卷主要包含了根据表格对应值等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀测试题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀测试题,共39页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试达标测试:

    这是一份冀教版九年级下册第30章 二次函数综合与测试达标测试,共26页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map