|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数难点解析试题(含详细解析)
    立即下载
    加入资料篮
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数难点解析试题(含详细解析)01
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数难点解析试题(含详细解析)02
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数难点解析试题(含详细解析)03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第30章 二次函数综合与测试优秀同步达标检测题

    展开
    这是一份初中冀教版第30章 二次函数综合与测试优秀同步达标检测题,共29页。试卷主要包含了抛物线,,的图象开口最大的是,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    2、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过(  )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
    A.正方体集装箱的体积,棱长xm
    B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
    C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
    D.高为14m的圆柱形储油罐的体积,底面圆半径xm
    4、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    5、二次函数的图象如图所示,那么下列说法正确的是( )

    A. B.
    C. D.
    6、抛物线,,的图象开口最大的是( )
    A. B. C. D.无法确定
    7、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    8、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是(  )
    A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
    9、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
    A. B. C. D.
    10、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,设点P是抛物线的顶点,则点P到直线的距离的最大值为________.
    2、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.

    3、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.

    4、用“描点法”画二次函数的图象时,列了如下表格:

    ……


    0
    1
    2
    ……

    ……
    6.5




    ……
    当时,二次函数的函数值______
    5、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过P作PE⊥x轴,垂足为点E.

    (1)求抛物线的函数表达式;
    (2)是否存在点P,使得以A、P、E为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;
    (3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由.
    2、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:


    -3
    -2
    -1
    0
    1



    8
    5
    4
    5


    根据以上列表,回答下列问题:
    (1)直接写出、的值;
    (2)求此二次函数的解析式.
    3、如图1,在平面直角坐标系中,直线与抛物线相交于A,B两点(点B在第一象限),点C在AB的延长线上.且(n为正整数).过点B,C的抛物线L,其顶点M在x轴上.

    (1)求AB的长;
    (2)①当时,抛物线L的函数表达式为 ;
    ②当时.求抛物线L的函数表达式 ;
    (3)如图2,抛物线E:经过B、C两点,顶点为P.且O、B、P三点在同一直线上,
    ①求与n的关系式;
    ②当时,设四边形PAMC的面积,当时,设四边形PAMC的面积(k,t为正整数,,),若,请直接写出值.
    4、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    5、己知二次函数.
    (1)若此二次函数图象的对称轴为,求它的解析式;
    (2)当时,y随x增大而减小,求k的取值范围.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    2、D
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
    【详解】
    解:由势力的线与y轴正半轴相交可知c>0,
    对称轴x=-<0,得b<0.

    所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.
    故选:D.
    【点睛】
    本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.
    3、D
    【解析】
    【分析】
    根据题意,列出关系式,即可判断是否是二次函数.
    【详解】
    A.由题得:,不是二次函数,故此选项不符合题意;
    B.由题得:,不是二次函数,故此选项不符合题意;
    C.由题得:,不是二次函数,故此选项不符合题意;
    D.由题得:,是二次函数,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
    4、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    5、D
    【解析】
    【分析】
    根据二次函数图象性质解题.
    【详解】
    解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
    B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
    C.由图象可知,当x=1时,y=,故C不符合题意,
    D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
    故选:D.
    【点睛】
    本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
    6、A
    【解析】
    【分析】
    先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
    【详解】
    解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
    ∵||<|1|<|-3|,
    ∴抛物线开口最大.
    故选A.
    【点睛】
    本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
    7、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    8、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    9、C
    【解析】
    【分析】
    由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
    【详解】
    解:,
    抛物线开口向上,对称轴为,
    当时,随的增大而减小,
    在时,随的增大而减小,

    解得,
    故选:C.
    【点睛】
    本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
    10、C
    【解析】
    【分析】
    根据平移的规律:左加右减,上加下减可得函数解析式.
    【详解】
    解:因为y=x2-2x+3=(x-1)2+2.
    所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
    故选:C.
    【点睛】
    本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
    二、填空题
    1、5
    【解析】
    【分析】
    根据抛物线解析式求出点P坐标,由直线解析式可知直线恒过点B(0,-3),当PB与直线垂直时,点P到直线的距离最大,根据两点间距离公式可出最大距离.
    【详解】
    解:∵
    ∴P(3,1)
    又直线恒过点B(0,-3),如图,

    ∴当PB与直线垂直时,点P到直线的距离最大,
    此时,
    ∴点P到直线的距离的最大值为5
    故答案为:5.
    【点睛】
    本题主要考查了二次函数的性质,以及点到直线间的距离,熟练掌握二次函数的性质是解答本题的关键.
    2、
    【解析】
    【分析】
    利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
    【详解】
    解:作QM⊥y轴于点M,Q′N⊥y轴于N,

    ∵∠PMQ=∠PNQ′=∠QPQ′=90°,
    ∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
    ∴∠QPM=∠PQ′N,
    在△PQM和△Q′PN中,

    ∴△PQM≌△Q′PN(AAS),
    ∴PN=QM,Q′N=PM,
    设Q(m,m+3),
    ∴PM=|m+2|,QM=|m|,
    ∴ON=|1-m|,
    ∴Q′(m+2,1−m),
    ∴OQ′2=(m+2)2+(1−m)2=m2+5,
    当m=0时,OQ′2有最小值为5,
    ∴OQ′的最小值为,
    故答案为:.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
    3、
    【解析】
    【分析】
    如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.
    【详解】
    解:建立平面直角坐标系如图:

    根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,
    设抛物线的的解析式为y=ax2+bx+c,把上面信息代入得,

    解得,,
    抛物线解析式为:,
    把代入得,;
    故答案为:
    【点睛】
    本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.
    4、-4
    【解析】
    【分析】
    由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.
    【详解】
    解:由表格可知当x=0和x=2时,y=-2.5,
    ∴抛物线的对称轴为x=1,
    ∴x=3和x=-1时的函数值相等,为-4,
    故答案为:-4.
    本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.
    5、
    【解析】
    【分析】
    函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.
    【详解】
    解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大
    ∴自变量x的取值范围是
    故答案为:.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.
    三、解答题
    1、 (1)y=-x2-2x+3
    (2)P1(-2,3)或P2(,)
    (3)点P的坐标为(-,),理由见解析.
    【解析】
    【分析】
    (1)把A(-3,0)、B(1,0)代入y=-x2+bx+c求出b、c的值即可求出该函数表达式;
    (2)设P(m,-m2-2m+3),表示出PE、AE的长,分或两种情况讨论即可找到P的坐标;
    (3)连接AC交PE于点H,把四边形分成两部分,表示出S四边形ABCP=S△PAC+S△ABC即可根据二次函数最值找到P的坐标.
    (1)
    把A(-3,0)、B(1,0)代入y=-x2+bx+c得:

    解得:,
    ∴抛物线的函数解析式为y=-x2-2x+3;
    (2)
    ∵A(-3,0),B(1,0),C(0,3),
    ∴OC=3,OB=1,
    ∴设P(m,-m2-2m+3),
    ∴PE=-m2-2m+3,AE=m+3,
    根据题意得:,
    解得:m1=-2,m2=-3(舍去),
    ∴-m2-2m+3=
    ∴P1(-2,3),
    或,
    解得:m1=,m2=−3(舍去),

    ∴P2(,),
    综上,点P坐标为P1(-2,3)或P2(,).
    (3)
    连接AC交PE于点H,

    由A(-3,0),C(0,3)得直线AC的表达式为:y=x+3,
    设P(m,-m2-2m+3),则H(m,m+3),
    ∴PH=-m2-3m
    ∴S△PAC=⋅(−m2−3m)×3
    ∴S四边形ABCP=S△PAC+S△ABC=
    当m=−时,S最大=,此时点P的坐标为(-,).
    【点睛】
    本题考查待定系数法求解析式,三角形的相似以及面积最值问题,熟练掌握好二次函数相关性质是解题基础,并能分类讨论,数形相结合是解题的关键.
    2、 (1)c=5,m=8
    (2)y=x²+2x+5
    【解析】
    【分析】
    (1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;
    (2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.
    (1)
    解:根据图表可知:
    二次函数的图象过点(0,5),(-2,5),
    ∴二次函数的对称轴为:直线,
    ∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,
    ∴(-3,8)的对称点为(1,8),
    ∴m=8,
    当x=0时,由表格中数据可知:c=5.
    (2)
    解:∵对称轴是直线x=-1,
    ∴由表格中数据可知:顶点为(-1,4),
    设y=a(x+1)2+4,
    将(0,5)代入y=a(x+1)2+4得,a+4=5,
    解得a=1,
    ∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.
    【点睛】
    本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键.
    3、 (1)
    (2)①;②
    (3)①;②或
    【解析】
    【分析】
    (1)联立直线与抛物线组成方程组解方程组得出点A、B的坐标分别为、,根据两点距离公式;
    (2)①当时,,则点C的坐标为,求抛物线顶点M横坐标为,设抛物线L的表达式为,将点B坐标代入得出,解方程即可;②当时,,则点C的坐标为,求出抛物线顶点M横坐标为,设抛物线L的表达式为,将点B的坐标代入得出,解方程即可;
    (3)①根据,则点C的坐标为,则抛物线顶点M横坐标为,可求点P的横坐标也为,待定系数法求直线OB的表达式为,根据点P在直线OB上,求出点P的坐标为;根据顶点式写出抛物线E的表达式为,将点B的坐标代入上式得,求解即可;②,当时,,当时,,根据,得出,根据k,t为正整数,,,得出,或,满足上述条件,求出或10即可.
    (1)
    解:联立直线与抛物线组成方程组,
    消去y得:,
    解得,
    故点A、B的坐标分别为、,
    ∴;
    (2)
    解:①当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    设抛物线L的表达式为,
    将点B的坐标代入上式得:,
    解得,
    故答案为:;
    ②当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    故设抛物线L的表达式为,
    将点B的坐标代入上式得:,
    解得,
    故抛物线的表达式为:;
    (3)
    ①当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    故点P的横坐标也为,
    设OB的解析式为y=sx,
    点B代入得1=,
    解得,
    直线OB的表达式为,
    ∵点P在直线OB 上,
    当时,,故点P的坐标为;
    则抛物线E的表达式为,
    将点B的坐标代入上式得:,
    解得:;
    ②,



    当时,,
    当时,,
    ∵,即,即,
    ∵k,t为正整数,,,
    ∴,或,满足上述条件,
    即或10,
    由①知,,
    ∴或.
    【点睛】
    本题考查待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,掌握待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,是解题关键
    4、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    5、 (1)y= x 2−2x−3
    (2)
    【解析】
    【分析】
    (1)直接根据二次函数对称轴的概念可得答案;
    (2)根据二次函数的性质可得问题的答案.
    (1)
    解:由题意,得:a=1,b=−k,c= k−5;
    ∴对称轴x=,
    解得:k=2,
    ∴二次函数解析式y= x 2−2x−3;
    (2)
    解:二次函数,a=1>0,
    ∴其图象开口向上,
    ∵时,y随x 的增大而减小,
    ∴对称轴位于x=1的右侧或对称轴为直线x=1,
    ∴,
    解得:.
    【点睛】
    此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.

    相关试卷

    2021学年第30章 二次函数综合与测试优秀课时训练: 这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共28页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    2021学年第30章 二次函数综合与测试优秀同步练习题: 这是一份2021学年第30章 二次函数综合与测试优秀同步练习题,共24页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map