搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试卷(含答案解析)

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试卷(含答案解析)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试卷(含答案解析)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题,共33页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在抛物线的图象上有三个点,则的大小关系为(       A. B. C. D.2、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过(       A. B. C. D.3、抛物线的对称轴是(       A.直线 B.直线 C.直线 D.直线4、若关于的一元二次方程的两根分别为,则二次函数的对称轴为直线(     A. B. C. D.5、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(  )A.4 B.10米 C.4 D.12米6、一次函数与二次函数的图象交点(  )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点7、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(       A. B.10米 C. D.12米8、函数向左平移个单位后其图象恰好经过坐标原点,则的值为(       A. B. C.3 D.或39、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是(       A. B. C. D.10、已知二次函数,当时,的增大而减小,则的取值范围是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若将二次函数yx2﹣2x+3配方为y=(xh2+k的形式,则y=___________.2、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.3、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么mn的大小关系是:m_____n.(填“>”、“=”或“<”)4、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于AB两点.若二次函数yx2+bx+c的图象经过点AB,试确定此二次函数的解析式为 ____________.5、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.三、解答题(5小题,每小题10分,共计50分)1、超市销售某种儿童玩具,如果每件利润为40元(市场管理部分规定,该种玩具每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加元,每天售出(1)请写出之间的函数表达式(2)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?2、2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴建立平而直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A点滑出,滑出后沿一段抛物线运动.(1)当运动员运动到离A处的水平距离为4米时离水平线的高度为7米.求抛物线的函数表达式(不要求写出自变量工的取值范围);(2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?3、如图,抛物线轴交于两点(A点在B点的左侧),与y轴交于点C,连接ACBCA点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.(1)求此抛物线的解析式;(2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQy轴时,作PMPQ,交抛物线于点M(点M在点P的右侧),以PQPM为邻边构造矩形PQNM,求该矩形周长的最小值;(3)设抛物线在点C与点P之间的部分(含点CP)最高点与最低点的纵坐标之差为h①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=16时,直接写出BCP的面积.4、如图,在平面直角坐标系中,抛物线x轴交于点,点,与y轴交于点C(1)求该抛物线的解析式;(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.5、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.(1)直接写出yx之间的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格? -参考答案-一、单选题1、C【解析】【分析】把三个点的横坐标代入解析式,然后比较函数值大小即可.【详解】解:把三个点的横坐标代入解析式得,所以,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.2、B【解析】【分析】由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.【详解】解:由题意知,平移后的抛物线解析式为代入解析式得,与A中点坐标不同,故不符合要求;代入解析式得,与B中点坐标相同,故符合要求;代入解析式得,与C中点坐标不同,故不符合要求;代入解析式得,与D中点坐标不同,故不符合要求;故选B.【点睛】本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.3、C【解析】【分析】抛物线的对称轴为:,根据公式直接计算即可得.【详解】解:其中:故选:C.【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.4、C【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程ax2bxc=0的两个根为−2和4,x1x2=− =2.∴二次函数的对称轴为x=−×2=1.故选:C.【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.5、B【解析】【分析】O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出CD点的横坐标即可求CD的长.【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax2O点到水面AB的距离为4米,AB点的纵坐标为﹣4,∵水面AB宽为20米,A(﹣10,﹣4),B(10,﹣4),A代入yax2﹣4=100aa=﹣y=﹣x2∵水位上升3米就达到警戒水位CDC点的纵坐标为﹣1,∴﹣1=﹣x2x=±5,CD=10,故选:B.【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.6、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解7、B【解析】【分析】O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出CD点的横坐标即可求CD的长.【详解】O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2O点到水面AB的距离为4米,AB点的纵坐标为-4,∵水面AB宽为20米,A(-10,-4),B(10,-4),A代入y=ax2-4=100a∵水位上升3米就达到警戒水位CDC点的纵坐标为-1,x=±5,CD=10,故选:B【点睛】本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.8、C【解析】【分析】把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.【详解】解:向左平移个单位后的函数解析式为函数图象经过坐标原点,解得故选:C.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.9、D【解析】【分析】由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.【详解】解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,得到:A、,得,故选项错误,不符合题意;B、对称轴为直线,得,解得,故选项错误,不符合题意;C、当时,得,整理得:,故选项错误,不符合题意;D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;故选:D.【点睛】本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.10、D【解析】【分析】先求出对称轴x,再由已知可得 b1,即可求b的范围.【详解】解:∵∴对称轴为直线xb,开口向下,在对称轴右侧,yx的增大而减小,∵当x1时,yx的增大而减小,∴1不在对称轴左侧,b1故选:D【点睛】本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.二、填空题1、【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】yx2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.【点睛】本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.2、【解析】【分析】首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.【详解】解:开口向下,轴的交点纵坐标为3,抛物线的解析式可以为:(答案不唯一).故答案为:(答案不唯一).【点睛】本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.3、【解析】【分析】先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.【详解】解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,所以当时,的增大而增大,故答案为:【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.4、y=x2-4x+3【解析】【分析】过点CCHAB于点H,然后利用垂径定理求出CHAHBH的长度,进而得到点A和点B的坐标,再将AB的坐标代入函数解析式求得bc,最后求得二次函数的解析式.【详解】解:过点CCHAB于点H,则AH=BHC(2,),CH=∵半径为2,AH=BH==1,A(1,0),B(3,0),∴二次函数的解析式为y=x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2-4x+3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点CCHAB于点H,利用垂径定理求出点A和点B的坐标.5、5【解析】【分析】先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.【详解】解:多项式除以的余数为1,时,同理可得:除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),因此有解得所以余式为由二次函数的性质得:当时,余式取得最大值,最大值为5,故答案为:5.【点睛】本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.三、解答题1、 (1)(2)当x为20时w最大,最大值是2400元【解析】【分析】(1)根据“每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件”列函数关系式即可;(2)根据题意得到w=,根据二次函数的性质得到当x<30时,wx的增大而增大,于是得到结论.(1)解:根据题意得,(2)根据题意得,w==a=<0,∴当x<30时,wx的增大而增大,∵40+x≤60,x≤20,∴当x=20时,w最大=2400,答:当x为20时w最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.2、 (1)(2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B【解析】【分析】(1)运用待定系数法求解即可;(2)设运动员运动的水平距离为m米时,依题意列出方程求解即可.(1)由题意可知抛物线过点,将其代人得:解得: ∴抛物线的函数表达式为:(2)设运动员运动的水平距离为m米时,依题意得:整理得:解得: (舍去),故运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处.【点睛】本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.3、 (1)(2)(3)①;②【解析】【分析】(1)将点代入解析式,待定系数法求二次函数解析式即可;(2)根据两点求得直线的解析式,进而求得的长,根据的范围分类讨论求得的值,进而得到矩形周长与的二次函数关系式,根据二次函数的性质求得最小值即可;(3)①根据抛物线解析式求得顶点坐标,进而根据的纵坐标与的纵坐标求得最大与最小值求得其差即可,根据的纵坐标大于3和小于等于3求解即可;②过点轴交于点,过点于点,根据①中的范围可得,当时,,进而求得点的坐标,根据计算即可(1)解:∵抛物线轴交于两点(A点在B点的左侧),与y轴交于点C,连接ACBCA点的坐标是(,0),∴令,则将点代入得解得则抛物线的解析式为(2)P是抛物线上的一个动点,其横坐标为m,且m>0.Q是直线AC上的一个动点,且位于x轴的上方,PQy点在点上方,,,设直线的解析式为解得直线的解析式为,则抛物线的解析式为对称轴为,顶点坐标为根据对称性可得设矩形的周长为①当时,,不能构成矩形,②当时, 时,③当时,对称轴为则当时,不存在最小值综上所述,矩形的周长的最小值为(3)抛物线的解析式为对称轴为,顶点坐标为时,解得时,时,②当时,时,解得如图,过点轴交于点,过点于点抛物线的解析式为,则解得【点睛】本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.4、 (1)(2)矩形PEDF周长的最大值为,此时点(3)【解析】【分析】(1)将点,点,代入解析式,待定系数法求解析式即可;(2)根据题意转化为求最长时点的坐标,进而求得周长即可;(3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.(1)解:将点,点,代入解析式,得解得抛物线的解析式为:(2)四边形是矩形,则则矩形PEDF周长为取得最大值时,矩形PEDF周长的最大设直线的解析式为,将点代入得,解得直线的解析式为,则时,取得最大值,最大值为此时矩形PEDF周长为时,(3)由(2)可知,则过点,则将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,则新抛物线解析式为:绕点Q顺时针方向旋转90°后得到轴,旋转90°后,则轴,的两个顶点恰好落在新抛物线上时,只有落在抛物线上,设直线①当在抛物线上时,如图,设点的横坐标分别为的两根即方程解得解得②当在抛物线上时,如图,设点的横坐标分别为中,直线的解析式为设直线的解析式为的两根解得直线的解析式为解得时,综上所述【点睛】本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.5、 (1)y= -5x+1000(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;(3)140元【解析】【分析】(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.(1)∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,y=200+5(160-x)=-5x+1000.(2)根据题意,得w=(x-100)(-5x+1000)= ∵抛物线开口向下,∴当x=150时,w有最大值,且为12500,此时应降价160-150=10元,故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.(3)根据题意,得-500≥11500,-500=11500时,解得∵抛物线w= 开口向下,-500≥11500的解集为140≤x≤160,∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.【点睛】本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键. 

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共35页。试卷主要包含了抛物线的顶点为,下列函数中,二次函数是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试精品同步训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品同步训练题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,二次函数是,二次函数图像的顶点坐标是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共30页。试卷主要包含了二次函数的最大值是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map