![2021-2022学年冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734586/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734586/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734586/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试精品课时练习
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共35页。
九年级数学下册第三十章二次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数的图象经过,,则b的值为( )
A.2 B. C.4 D.
2、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
3、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
4、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
5、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
6、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
7、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )
A. B. C. D.
8、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
9、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
10、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
2、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.
3、用“描点法”画二次函数的图象时,列了如下表格:
……
0
1
2
……
……
6.5
……
当时,二次函数的函数值______
4、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.
5、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
三、解答题(5小题,每小题10分,共计50分)
1、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
2、一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的表达式;
(2)一辆货车高4m,宽2.4m,能否从该隧道内通过,为什么?
3、在平面直角坐标系中,抛物线y=x2﹣4mx+m(m≠0)与y交于点P,将抛物线y=x2﹣4mx+m(m≠0)上点P及点P左边的部分图象沿y轴平移,使点P平移后的对应点Q落在(0,﹣m)处,将平移后的图象与原图象剩余部分合称为图象G
(1)当m=1时,
①求图象G与x轴正半轴的交点坐标;
②图象G对应的函数值y随x增大而减小时x的取值范围为 ;
(2)当图象G的最低点到x轴的距离为时,求m的值.
(3)当过点Q且与y轴垂直的直线与图象G有三个交点时,设另外两个交点为A、B.当Q、A、B三点中,有一点到另外两点的距离之比是1:1时,直接写出线段AB的长度.
4、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).
(1)的长为___________(用含t的代数式表示)
(2)当落在的角平分线上时,求此时t的值.
(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
5、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).
(1)求此抛物线的解析式;
(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
2、B
【解析】
【分析】
直接利用图象设出抛物线解析式,进而得出答案.
【详解】
∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
∴设抛物线解析式为y=ax2,点B(45,-78),
∴-78=452a,
解得:a=,
∴此抛物线钢拱的函数表达式为,
故选:B.
【点睛】
本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
3、B
【解析】
【分析】
根据二次函数的定义逐个判断即可.
【详解】
解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
B.是二次函数,故本选项符合题意;
C.是一次函数,不是二次函数,故本选项不符合题意;
D.不是二次函数,故本选项不符合题意;
故选:B.
【点睛】
本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
4、B
【解析】
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
5、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−0,故③正确;
当x=-1时,y=a-b+c0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
10、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
二、填空题
1、6
【解析】
【分析】
建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.
【详解】
建立平面直角坐标系如图:
则抛物线顶点C坐标为(0,3),
设抛物线解析式y=ax2+3,
将A点坐标(﹣3,0)代入,可得:0=9a+3,
解得:a=﹣,
故抛物线解析式为y=﹣x2+3,
当水面下降3米,通过抛物线在图上的观察可转化为:
当y=﹣3时,对应的抛物线上两点之间的距离,
也就是直线y=﹣3与抛物线相交的两点之间的距离,
将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,
解得:x=±,
所以水面宽度为米,
故答案为:.
【点睛】
本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.
2、5
【解析】
【分析】
先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.
【详解】
解:多项式除以的余数为1,
,
当时,,
同理可得:,
设除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),
则,
因此有,
解得a=-1b=6c=-4,
所以余式为,
由二次函数的性质得:当时,余式取得最大值,最大值为5,
故答案为:5.
【点睛】
本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.
3、-4
【解析】
【分析】
由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.
【详解】
解:由表格可知当x=0和x=2时,y=-2.5,
∴抛物线的对称轴为x=1,
∴x=3和x=-1时的函数值相等,为-4,
故答案为:-4.
本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.
4、##
【解析】
【分析】
过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
【详解】
解:如图,过点作,交于点,
∠C=90°.直角边AC=3m、BC=4m,
设,则
四边形是矩形
,
整理得
设矩形的面积为,则
当取得最大值时,,此时
故答案为:
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
5、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
2、 (1)
(2)货车可以通过,说明见解析
【解析】
【分析】
(1)由题意可知,抛物线的顶点坐标(4,6),设抛物线的解析式为,将A点坐标代入求解a的值,进而得到抛物线的表达式;
(2)令y=4,代入解析式,得到方程的两根,比较与2.4的大小即可判断货车是否可以通过.
(1)
解:由题意可知,抛物线的顶点坐标(4,6)
设抛物线的解析式为
又∵点A(0,2)在抛物线上
∴
解得
∴抛物线的表达式为:.
(2)
解:令y=4,则有
解得,
∵
∴货车可以通过.
【点睛】
本题考查了二次函数的解析式与应用.解题的关键在于适当的设二次函数解析式的形式.
3、 (1)①(,0),(,0);②或
(2)或
(3)或
【解析】
【分析】
(1)①令y=0,得一元二次方程,求出方程的解即可解决问题;②将抛物线解析式配方找出对称轴,结合函数图象解答问题即可;
(2)分两种情况结合图象G的最低点到x轴的距离为列出方程求解即可;
(3)分两种情况求出点A,B的坐标,根据Q、A、B三点中,有一点到另外两点的距离之比是1:1列方程求出mr wfhg,gmf fiy AB的长即可
(1)
①当m=1时,y=x2﹣4mx+m=x2﹣4x+1
令y=0,则x2﹣4x+1=0
解得,,
∴图象G与x轴正半轴的交点坐标(,0),(,0)
②y=x2﹣4x+1=
∴函数y=x2﹣4x+1对称轴为直线x=2,顶点坐标为(2,-3),且开口向上
如图,
∴图象G对应的函数值y随x增大而减小时x的取值范围为或
故答案为:或
(2)
当时,
∵y=x2﹣4mx+m
又∵
∴①当0<m<时,>0,即点Q是图象G的最低点,
∴,不符合题意舍去,
②当m≥时,≤0,即抛物线的顶点是图象G的最低点,
∴-(-4m2+m)=12
解得,,(舍去)
当时,同理可得,
综上,m的值为或
(3)
当时,如图所示,
当时,则有
配方得,
解得,
∴
∴
∵
∴
∴
整理得,
解得,
经检验,是原方程的根,
但m≠0
∴
∴AB=24×81256-2×916=2×8164-7264=34;
当时,如图,
当时,则有
配方得,
解得,
∴
平移后的图象解析式为
当时,则有
解得,x1=4m,x2=0
∴
∴
∵,即
∴
解得,
经检验是原方程的根,
但m≠0
∴
∴
综上所述,AB的长为:或
【点睛】
本题主要考查了二次函数的图象与性质,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数构建方程确定交点坐标.
4、 (1)
(2)
(3),当时,S有最大值
【解析】
【分析】
(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
(2)延长交BC于D,由,得到,,则
再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
(1)
解:由旋转的性质可得,
∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
∴,
∵,,
∴,,
∴,
∴,即,
∴,,
∴;
(2)
解:如图所示,延长交BC于D,
∵∠ACB=90°,
∴AC⊥BC,
∵,
∴,,
∴
∵在∠ABC的角平分线上,,,
∴,
∴,
∴,
∴,
又∵,
∴,
解得;
(3)
解:如图2所示,当点正好落在BC上时,
∴,
∵,
∴,
∴,即,
∴,
又∵,
∴,
解得,
当,如图1所示,△ABC与重叠部分即为,
∴此时;
当点M恰好与B重合时,此时,
∴,
解得,
当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
∴,
同理可证,
∴,即,,
∴,
∴,
∵,
∴,
∴即,
∴,
∴,
∴;
当时,如图4所示,,△ABC与重叠部分即为△BPS,
同理可证,
∴,即,
∴,,
∴,
∴综上所述,
∴,
∴由二次函数的性质可知,
∴当时,S有最大值.
【点睛】
本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
5、 (1)y=x2+2x﹣3;
(2)(﹣,)
(3)(-1,2)或(-1,﹣4)或(-1,)或(-1,)
【解析】
【分析】
(1)把点A,B代入y=ax2+bx﹣3即可;
(2)设P(x,x2+2x﹣3),求出直线AB的解析,用含x的代数式表示出点E坐标,即可用含x的代数式表示出PE的长度,由函数的思想可求出点P的横坐标,进一步求出其纵坐标;
(3)设点Q(-1,a),然后分类讨论利用勾股定理列出关于a的方程求解.
(1)
解:把A(﹣3,0)和C(1,0)代入y=ax2+bx﹣3,
得,,
解得,,
∴抛物线解析式为y=x2+2x﹣3;
(2)
解:设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,
由抛物线解析式y=x2+2x﹣3,
令x=0,则y=﹣3,
∴B(0,﹣3),
把A(﹣3,0)和B(0,﹣3)代入y=kx+b,
得,,
解得,,
∴直线AB的解析式为y=﹣x﹣3,
∵PE⊥x轴,
∴E(x,﹣x﹣3),
∵P在直线AB下方,
∴PE=﹣x﹣3﹣( x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,
当x=﹣时,y=x2+2x﹣3=,
∴当PE最大时,P点坐标为(﹣,);
(3)
存在,理由如下,
∵x=﹣=-1,
∴抛物线的对称轴为直线x=-1,
设Q(-1,a),
∵B(0,-3),A(-3,0),
①当∠QAB=90°时,AQ2+AB2=BQ2,
∴22+a2+32+32=12+(3+a)2,
解得:a=2,
∴Q1(-1,2),
②当∠QBA=90°时,BQ2+AB2=AQ2,
∴12+(3+a)2+32+32=22+a2,
解得:a=﹣4,
∴Q2(-1,﹣4),
③当∠AQB=90°时,BQ2+AQ2=AB2,
∴12+(3+a)2+22+a2=32+32,
解得:a1=或a1=,
∴Q3(-1,),Q4(-1,),
综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1,)或(-1,).
【点睛】
本题是二次函数的综合题,主要考查了二次函数图象上点的坐标特征、待定系数法求函数的解析式、二次函数的性质、勾股定理,解题的关键是用含有未知数的代数式表达点的坐标和线段的长度.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题,共33页。
这是一份冀教版九年级下册第30章 二次函数综合与测试精品同步训练题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,二次函数是,二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀习题,共27页。试卷主要包含了下列函数中,二次函数是等内容,欢迎下载使用。