搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节练习试卷(含答案解析)

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节练习试卷(含答案解析)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节练习试卷(含答案解析)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数章节练习试卷(含答案解析)第3页
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试精品同步训练题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品同步训练题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,二次函数是,二次函数图像的顶点坐标是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点,,都在函数的图象上,则( )
    A. B. C. D.
    2、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    3、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
    A. B. C.3 D.或3
    4、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )
    A. B. C. D.
    5、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图(  )
    A. B.
    C. D.
    6、对于抛物线下列说法正确的是( )
    A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
    7、下列函数中,二次函数是( )
    A.y=﹣3x+5 B.y=x(4x﹣3)
    C.y=2(x+4)2﹣2x2 D.y=
    8、二次函数图像的顶点坐标是( )
    A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)
    9、已知二次函数的图象上有三点,,,则、、的大小关系为( )
    A. B. C. D.
    10、二次函数的最大值是( )
    A. B. C.1 D.2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)
    2、抛物线y=x2+2x+的对称轴是直线______.
    3、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
    4、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.
    5、抛物线与y轴的交点坐标为_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、(1)解方程:2x2﹣3x﹣1=0;
    (2)用配方法求抛物线y=x2+4x﹣5的开口方向、对称轴和顶点坐标.
    2、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?
    (1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简);

    调价后的每件利润
    调价后的销售量
    甲种礼品


    乙种礼品


    (2)解答:
    3、在平面直角坐标系中,抛物线y=x2﹣4mx+m(m≠0)与y交于点P,将抛物线y=x2﹣4mx+m(m≠0)上点P及点P左边的部分图象沿y轴平移,使点P平移后的对应点Q落在(0,﹣m)处,将平移后的图象与原图象剩余部分合称为图象G
    (1)当m=1时,
    ①求图象G与x轴正半轴的交点坐标;
    ②图象G对应的函数值y随x增大而减小时x的取值范围为 ;
    (2)当图象G的最低点到x轴的距离为时,求m的值.
    (3)当过点Q且与y轴垂直的直线与图象G有三个交点时,设另外两个交点为A、B.当Q、A、B三点中,有一点到另外两点的距离之比是1:1时,直接写出线段AB的长度.
    4、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).

    (1)当为直角三角形时,求的面积
    (2)如图,当时,过点P作轴于点Q,求BQ的长.
    (3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
    5、如图1,在平面直角坐标系中,直线与抛物线相交于A,B两点(点B在第一象限),点C在AB的延长线上.且(n为正整数).过点B,C的抛物线L,其顶点M在x轴上.

    (1)求AB的长;
    (2)①当时,抛物线L的函数表达式为 ;
    ②当时.求抛物线L的函数表达式 ;
    (3)如图2,抛物线E:经过B、C两点,顶点为P.且O、B、P三点在同一直线上,
    ①求与n的关系式;
    ②当时,设四边形PAMC的面积,当时,设四边形PAMC的面积(k,t为正整数,,),若,请直接写出值.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    把点的坐标分别代入函数解析式可分别求得、、,再比较其大小即可.
    【详解】
    解:点,,都在函数的图象上,
    ,,,

    故选:C.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
    2、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    3、C
    【解析】
    【分析】
    把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
    【详解】
    解:,
    向左平移个单位后的函数解析式为,
    函数图象经过坐标原点,

    解得.
    故选:C.
    【点睛】
    本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
    4、C
    【解析】
    【分析】
    根据两根之和公式可以求出对称轴公式.
    【详解】
    解:∵一元二次方程ax2+bx+c=0的两个根为−2和4,
    ∴x1+x2=− =2.
    ∴二次函数的对称轴为x=−=×2=1.
    故选:C.
    【点睛】
    本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.
    5、B
    【解析】
    【分析】
    分别利用函数解析式分析图象得出答案.
    【详解】
    解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
    B、两函数图象符合题意;
    C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
    D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
    6、D
    【解析】
    【分析】
    根据二次函数的性质对各选项分析判断即可得解.
    【详解】
    解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
    ∴A选项不正确;
    由抛物线,可知其最小值为-2,∴B选项不正确;
    由抛物线,可知其顶点坐标,∴C选项不正确;
    在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
    故选:D.
    【点睛】
    本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
    7、B
    【解析】
    【分析】
    根据二次函数的定义逐个判断即可.
    【详解】
    解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
    B.是二次函数,故本选项符合题意;
    C.是一次函数,不是二次函数,故本选项不符合题意;
    D.不是二次函数,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
    8、C
    【解析】
    【分析】
    直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.
    【详解】
    解:抛物线的顶点坐标为,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.
    9、A
    【解析】
    【分析】
    分别求出、、的大小,再进行判断即可.
    【详解】
    解:




    A、故选项正确,符合题意;
    B、故选项错误,不符合题意;
    C、故选项错误,不符合题意;
    D、故选项错误,不符合题意.
    故选:A.
    【点睛】
    此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
    10、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    二、填空题
    1、向上
    【解析】
    【分析】
    根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.
    【详解】
    ∵a=2>0,
    ∴二次函数y=2x2+1图象的开口方向是向上,
    故答案为:向上.
    【点睛】
    本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.
    2、x=﹣1
    【解析】
    【分析】
    抛物线的对称轴方程为: 利用公式直接计算即可.
    【详解】
    解:抛物线y=x2+2x+的对称轴是直线:

    故答案为:
    【点睛】
    本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.
    3、<
    【解析】
    【分析】
    找到二次函数对称轴,根据二次函数的增减性即可得出结论.
    【详解】
    解:∵y=﹣2(x﹣1)2+3,
    ∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
    ∴在x<1时,y随x的增大而增大,
    ∵x1<x2<0,
    ∴y1<y2.
    故答案为:<.
    【点睛】
    本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
    4、y=(x﹣2)2﹣2.
    【解析】
    【分析】
    根据函数图象向右平移自变量减,向下平移常数项减,可得答案.
    【详解】
    解;将二次函数y=x2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,
    故答案为:y=(x﹣2)2﹣2.
    【点睛】
    本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.
    5、
    【解析】
    【分析】
    根据二次函数图像的性质,时,通过计算即可得到答案.
    【详解】
    当时,
    ∴抛物线与y轴的交点坐标为
    故答案为:.
    【点睛】
    本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
    三、解答题
    1、(1) ;(2)抛物线的开口向上,对称轴为直线 ,顶点坐标为
    【解析】
    【分析】
    (1)利用公式法,即可求解;
    (2)先将抛物线解析式化为顶点式,即可求解.
    【详解】
    解:(1)
    ∵ ,
    ∴ ,
    ∴ ,
    ∴ ;
    (2)
    ∴抛物线的开口向上,对称轴为直线 ,顶点坐标为 .
    【点睛】
    本题主要考查了解一元二次方程,二次函数的图象和性质,熟练掌握一元二次方程的解法,二次函数的图象和性质是解题的关键.
    2、 (1)①,②,③
    (2)每天获得的最大利润为元.
    【解析】
    【分析】
    (1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;
    (2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.
    (1)
    解:设甲种礼品每件降低了x元,则调价后的销售量为:件,
    乙种礼品调价后的销售量为:件,
    乙种礼品调价后的利润为:元,
    填表如下:

    调价后的每件利润
    调价后的销售量
    甲种礼品


    乙种礼品



    (2)
    解:设每天的销售利润为元,则



    当时,
    (元)
    所以每天获得的最大利润为元.
    【点睛】
    本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.
    3、 (1)①(,0),(,0);②或
    (2)或
    (3)或
    【解析】
    【分析】
    (1)①令y=0,得一元二次方程,求出方程的解即可解决问题;②将抛物线解析式配方找出对称轴,结合函数图象解答问题即可;
    (2)分两种情况结合图象G的最低点到x轴的距离为列出方程求解即可;
    (3)分两种情况求出点A,B的坐标,根据Q、A、B三点中,有一点到另外两点的距离之比是1:1列方程求出mr wfhg,gmf fiy AB的长即可
    (1)
    ①当m=1时,y=x2﹣4mx+m=x2﹣4x+1
    令y=0,则x2﹣4x+1=0
    解得,,
    ∴图象G与x轴正半轴的交点坐标(,0),(,0)
    ②y=x2﹣4x+1=
    ∴函数y=x2﹣4x+1对称轴为直线x=2,顶点坐标为(2,-3),且开口向上
    如图,

    ∴图象G对应的函数值y随x增大而减小时x的取值范围为或
    故答案为:或
    (2)
    当时,
    ∵y=x2﹣4mx+m
    又∵
    ∴①当0<m<时,>0,即点Q是图象G的最低点,
    ∴,不符合题意舍去,
    ②当m≥时,≤0,即抛物线的顶点是图象G的最低点,
    ∴-(-4m2+m)=12
    解得,,(舍去)
    当时,同理可得,
    综上,m的值为或
    (3)
    当时,如图所示,

    当时,则有
    配方得,
    解得,





    整理得,
    解得,
    经检验,是原方程的根,
    但m≠0

    ∴AB=24×81256-2×916=2×8164-7264=34;
    当时,如图,

    当时,则有
    配方得,
    解得,

    平移后的图象解析式为
    当时,则有
    解得,x1=4m,x2=0


    ∵,即

    解得,
    经检验是原方程的根,
    但m≠0




    综上所述,AB的长为:或
    【点睛】
    本题主要考查了二次函数的图象与性质,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数构建方程确定交点坐标.
    4、 (1)4
    (2)2
    (3)或m=
    【解析】
    【分析】
    (1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
    (2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
    (3)先说明∠ABC=45°,然后分三种情况解答即可.
    (1)
    解:由抛物线开口向上,则m>0
    令x=0,则y=-2,即C点坐标为(0,-2),OC=2
    令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
    ∴OA=2,OB=m
    ∴AB=m+2
    由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
    ∵当为直角三角形时,仅有∠ACB=90°
    ∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
    ∴AB=m+2=4
    ∴的面积为:·AB·OC=×4×2=4.
    (2)
    解:设BC所在直线的解析式为:y=kx+b
    则 ,解得
    ∴BC所在直线的解析式为y=x-2
    设直线AP的解析式为y=x+c
    则有:0=×(-2)+c,即c=
    ∴线AP的解析式为y=x+
    联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
    ∴点P的纵坐标为:
    ∴点P的坐标为(m+2,)
    ∴OQ=m+2
    ∴BQ=OQ-OB= m+2-m=2.
    (3)
    解:∵点P为抛物线上一动点(点P不与点C重合).
    ∴设P(x,)
    ∵在△ABC中,∠BAC=45°
    ∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
    ①a.若△ABC∽△BAP

    又∵BP=AC
    ∴△ABC∽△BAP不符合题意;

    b. 若△ABP∽△BAC

    过P作PQ⊥x轴于点Q,则∠PQB=90°
    ∴∠BPQ=90°-∠PBQ=45°
    ∴PQ=BQ=m-x
    由于PQ=


    ∴x-m=0或
    ∴x=m(舍去),x=-m-2
    ∴BQ=m-(-m-2)=2m+2


    ∴m2-4m-4=0,解得:m=或m=(舍去)
    ∴m=;

    ②当∠PAB=∠BAC=45°时,分两种情况讨论:
    a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
    b. 若△ABP∽△BAC,则 ,
    过P作PQ⊥x轴于点Q,则∠PQA=90°
    ∴∠APQ=90°-∠PAB=45°
    ∴PQ=AQ=x+2
    由于PQ=


    ∴x+2=0或
    ∴x=-2(舍去),x=2m
    ∴AQ= =2m+2


    ∴m2-4m-4=0,解得:m=(舍去)或m=
    ∴m=;

    ③当∠APB=∠BAC=45°时,分两种情况讨论:
    a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
    ∵∠MAB≠∠PAB,
    ∴∠PAB≠∠ABC,
    ∴△PAB与△BAC不相似;

    b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
    ∵∠PBA≠∠NBA,
    ∴∠PBA≠∠CBA,
    ∴△PAB与△BAC不相似;

    综上,m的值为m=或m=.
    【点睛】
    本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.
    5、 (1)
    (2)①;②
    (3)①;②或
    【解析】
    【分析】
    (1)联立直线与抛物线组成方程组解方程组得出点A、B的坐标分别为、,根据两点距离公式;
    (2)①当时,,则点C的坐标为,求抛物线顶点M横坐标为,设抛物线L的表达式为,将点B坐标代入得出,解方程即可;②当时,,则点C的坐标为,求出抛物线顶点M横坐标为,设抛物线L的表达式为,将点B的坐标代入得出,解方程即可;
    (3)①根据,则点C的坐标为,则抛物线顶点M横坐标为,可求点P的横坐标也为,待定系数法求直线OB的表达式为,根据点P在直线OB上,求出点P的坐标为;根据顶点式写出抛物线E的表达式为,将点B的坐标代入上式得,求解即可;②,当时,,当时,,根据,得出,根据k,t为正整数,,,得出,或,满足上述条件,求出或10即可.
    (1)
    解:联立直线与抛物线组成方程组,
    消去y得:,
    解得,
    故点A、B的坐标分别为、,
    ∴;
    (2)
    解:①当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    设抛物线L的表达式为,
    将点B的坐标代入上式得:,
    解得,
    故答案为:;
    ②当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    故设抛物线L的表达式为,
    将点B的坐标代入上式得:,
    解得,
    故抛物线的表达式为:;
    (3)
    ①当时,,则点C的坐标为,
    则抛物线顶点M横坐标为,
    故点P的横坐标也为,
    设OB的解析式为y=sx,
    点B代入得1=,
    解得,
    直线OB的表达式为,
    ∵点P在直线OB 上,
    当时,,故点P的坐标为;
    则抛物线E的表达式为,
    将点B的坐标代入上式得:,
    解得:;
    ②,



    当时,,
    当时,,
    ∵,即,即,
    ∵k,t为正整数,,,
    ∴,或,满足上述条件,
    即或10,
    由①知,,
    ∴或.
    【点睛】
    本题考查待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,掌握待定系数法求抛物线解析式,抛物线顶点式,解方程组,一次函数解析式,四边形面积,二元一次方程的整数解,代数式的值,是解题关键

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题,共33页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试优秀同步测试题:

    这是一份数学九年级下册第30章 二次函数综合与测试优秀同步测试题,共29页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map