搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试卷

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试卷第1页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试卷第2页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试卷第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级下册第29章 直线与圆的位置关系综合与测试精品单元测试综合训练题

    展开

    这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品单元测试综合训练题,共29页。试卷主要包含了若O是ABC的内心,当时,,已知M,在平面直角坐标系中,以点,如图,等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(       ).A.20° B.25° C.30° D.40°2、如图,矩形ABCD中,GBC的中点,过ADG三点的⊙O与边ABCD分别交于点E、点F,给出下列判断:(1)ACBD的交点是⊙O的圆心;(2)AFDE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是(       A.4 B.3 C.2 D.13、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是(       A.点P在⊙O B.点P在⊙O C.点P在⊙O D.无法判断4、若OABC的内心,当时,       A.130° B.160° C.100° D.110°5、已知M(1,2),N(3,﹣3),Pxy)三点可以确定一个圆,则以下P点坐标不满足要求的是(       A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)6、如图,AB是⊙O的直径,CD是⊙O上两点,ADCD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于(       A.40° B.50° C.55° D.60°7、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定(       A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交8、如图,的切线,是切点,点上,且,则等于(       A.54° B.58° C.64° D.68°9、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )A. B. C.5 D.510、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是(  )A.点B在⊙A B.点C在⊙AC.直线BC与⊙A相切 D.直线BC与⊙A相离第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆内接正多边形的一条边所对的圆心角是,则该正多边形边数是__________.2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.3、如图,PB与⊙O相切于点BOP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.4、在RtABC中,∠ACB=90°,BC=3,AC=4,直线l经过△ABC的内心O,过点CCDl,垂足为D,连接AD,则AD的最小值是=____.5、正六边形的边心距与半径的比值为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.2、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).3、如图,的切线,点在上,相交于的直径,连接,若(1)求证:平分(2)当时,求的半径长.4、如图,在中,,⊙O的外接圆,过点C,交⊙O于点D,连接ADBC于点E,延长DC至点F,使,连接AF(1)求证:(2)求证:AF是⊙O的切线.5、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°     (1)试说明:直线为⊙P的切线.(2)若∠B=30°,AD=2,求CD的长. -参考答案-一、单选题1、B【解析】【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、B【解析】【分析】连接DGAG,作GHADH,连接OD,如图,先确定AGDG,则GH垂直平分AD,则可判断点OHG上,再根据HGBC可判定BC与圆O相切;接着利用OGOD可判断圆心O不是ACBD的交点;然后根据四边形AEFDO的内接矩形可判断AFDE的交点是圆O的圆心.【详解】解:连接DGAG,作GHADH,连接OD,如图,GBC的中点,CGBGCDBA,根据勾股定理可得,AGDGGH垂直平分AD∴点OHG上,ADBCHGBCBC与圆O相切;OGOD∴点O不是HG的中点,∴圆心O不是ACBD的交点;∵∠ADF=∠DAE90°,∴∠AEF90°,∴四边形AEFDO的内接矩形,AFDE的交点是圆O的圆心;AE=DF∴(1)错误,(2)(3(4)正确.故选:B【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.3、A【解析】【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为3,若PO=2,∴2<3,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当rd时,点P在⊙O内,②当r=d时,点P在⊙O上,③当rd时,点P在⊙O外.4、A【解析】【分析】由三角形内角和以及内心定义计算即可【详解】又∵OABC的内心OBOC角平分线,180°=180°-50°=130°故选:A.【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.5、C【解析】【分析】先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.【详解】解:设直线的解析式为将点代入得:,解得则直线的解析式为A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;故选:C.【点睛】本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.6、C【解析】【分析】连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.【详解】解:连接OC,如图所示:CE相切,故选:C.【点睛】题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.7、B【解析】【分析】由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【详解】解:∵点(2,3)到x轴的距离是3,等于半径,y轴的距离是2,小于半径,∴圆与y轴相交,与x轴相切.故选B.【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8、C【解析】【分析】连接,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接,如下图:PAPB的切线,AB是切点∴由四边形的内角和可得:故选C.【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.9、C【解析】【分析】先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PAPB为⊙O的切线,PA=PB∵∠APB=60°,∴△APB为等边三角形,AB=PA=5.故选:C.【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.10、D【解析】【分析】A点作AHBCH,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.【详解】解:过A点作AHBCH,如图,AB=ACBH=CH=BC=4,RtABH中,AH==3,AB=5>3,B点在⊙A外,所以A选项不符合题意;AC=5>3,C点在⊙A外,所以B选项不符合题意;AHBCAH=3>半径,∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.故选:D.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交dr;直线l和⊙O相切d=r;直线l和⊙O相离dr.也考查了点与圆的位置关系和等腰三角形的性质.二、填空题1、【解析】【分析】根据正多边形的中心角=计算即可.【详解】解:设正多边形的边数为n由题意得,60°,n6故答案为:六.【点睛】本题考查正多边形和圆,解题的关键是记住正多边形的中心角=2、【解析】【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,AO=BC又∵AO=BOBO=BC∴∠BOC=∠BCO=45°,OD=OB∴∠ODB=∠OBD∵∠ODB+∠OBD=∠BOC∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.3、4【解析】【分析】连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.【详解】如图,连接OBPB与⊙O相切于点B∴∠PBO=90°,∵∠P=30°,OB=2,PO=4,故答案为:4.【点睛】本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.4、【解析】【分析】先利用切线长定理求得OC=,再判断出当点D运动到线段QA上时,AD取得最小值,然后利用勾股定理求解即可.【详解】解:⊙ORtABC三边的切点分别为EFG,连接OEOFOGOC∵⊙ORtABC内切圆,∠ACB=90°,BC=3,AC=4,CE=CFBE=BGAF=AG,则四边形OECF是正方形,AB==5,设正方形OECF的边长为x,则BE=BG=3-xAF=AG=4-x依题意得:3-x+4-x=5,解得:x=1,OC=CDl,即∠CDO=90°,∴点D在以OC为直径的⊙Q上,连接QA,过点QQPAC于点P当点D运动到线段QA上时,AD取得最小值,CP=QP=AP=AC-CP=,⊙Q的半径为QD=QA=AD的最小值为AQ-QD=故答案为:【点睛】本题考查了内心的性质,切线长定理,圆周角定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.5、【解析】【分析】设正六边形的半径是r,由正六边形的内切圆的半径是正六边形的边心距,因而是r,计算比值即可.【详解】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,如上图所示,内切圆半径=,因而是r,则可知正六边形的边心距与半径的比值为【点睛】本题考查正多边形的边心距与内接圆的半径之间的关系,搞清正多边形内接圆与正多边形之间的关系是解决本题的关键.三、解答题1、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接平分是半径,所在直线与相切.(2)解:连接的直径,又∵的半径为【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.2、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;(2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OCAB的直径,直线l相切于点A∴直线DC的切线.(2)解:∵又∵是等边三角形,中,∴阴影部分的面积=【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.3、 (1)见解析(2)的半径长为【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接的切线,,即平分(2)解:如图,连接中,由勾股定理得:的直径,,即解得:的半径长为【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.4、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AFBC,从而得OAAF,从而得证.(1)解:∵又∵(2)解:如图,连接OA∵已知AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.5、 (1)见解析(2)【解析】【分析】(1)连接PC,则∠APC=2∠B,可证PCDA,证得PCCD,则结论得证;(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.(1)连接PCPCPB∴∠B=∠PCB∴∠APC=2∠B∵2∠B+∠DAB=180°,∴∠DAP+∠APC=180°,PCDA∵∠ADC=90°,∴∠DCP=90°,DCCP∴直线CD为⊙P的切线;(2)连接AC∵∠B=30°,∴∠CPA=2∠B=60°,AP=CP,∠CPA=60°,∴△APC为等边三角形,∵∠DCP=90°,∴∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,AC=2AD=4,CD=【点睛】本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题. 

    相关试卷

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测:

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测,共30页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀单元测试课时练习:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀单元测试课时练习,共31页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。

    初中数学第29章 直线与圆的位置关系综合与测试精品同步达标检测题:

    这是一份初中数学第29章 直线与圆的位置关系综合与测试精品同步达标检测题,共39页。试卷主要包含了如图,将的圆周分成五等分等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map