开学活动
搜索
    上传资料 赚现金

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题练习试题

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题练习试题第1页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题练习试题第2页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题练习试题第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习题,共30页。试卷主要包含了以半径为1的圆的内接正三角形,在平面直角坐标系中,以点等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )
    A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
    C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
    2、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    3、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为( )

    A.4.8 B.5 C.4 D.4
    4、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP2 D.0≤OP4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    5、A
    【解析】
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    6、B
    【解析】
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    7、B
    【解析】
    【分析】
    如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.
    【详解】
    解:如图所示,过C作CD⊥AB,交AB于点D,

    在Rt△ABC中,AC=3cm,BC=4cm,
    根据勾股定理得:AB==5(cm),
    ∵S△ABC=BC•AC=AB•CD,
    ∴×3×4=×10×CD,
    解得:CD=2.4,
    则r=2.4(cm).
    故选:B.
    【点睛】
    此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.
    8、C
    【解析】
    【分析】
    分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.
    【详解】
    如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,

    ∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,
    ∵,
    ∴这个三角形是直角三角形,
    故选C.
    【点睛】
    本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.
    9、B
    【解析】
    【分析】
    由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
    【详解】
    解:∵点(2,3)到x轴的距离是3,等于半径,
    到y轴的距离是2,小于半径,
    ∴圆与y轴相交,与x轴相切.
    故选B.
    【点睛】
    本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
    10、A
    【解析】
    【分析】
    正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.
    【详解】
    解:正三角形的面积为:,
    三个小半圆的面积为:,中间大圆的面积为:,
    所以阴影部分的面积为:,
    故选:
    【点睛】
    本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.
    二、填空题
    1、
    2、##
    【解析】
    【分析】
    在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
    【详解】
    解:在Rt△ABC中,BC=4,sinA=,
    ∴=,即=,
    ∴AB=5,
    连接OD,

    ∵AC是⊙O的切线,
    ∴OD⊥AC,
    设⊙O的半径为r,则OD= OB=r,
    ∴AO=5- r,
    在Rt△AOD中,sinA=,
    ∴=,即=,
    ∴r=.
    经检验r=是方程的解,
    ∴⊙O的半径长为.
    故答案为:.
    【点睛】
    本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
    3、
    【解析】
    【分析】
    当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
    【详解】
    ∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
    ∴⊙P的半径为1
    ∵点A(-3,0),点 B(0,)
    ∴OA=3,

    ∴∠BAO=30°
    当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC

    则PC⊥AB,且PC=1
    ∴AP=2PC=2
    ∴OP=OA−AP=3−2=1
    ∴P点坐标为(−1,0)
    即m=−1
    当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD

    则PD⊥AB,且PD=1
    ∴AP=2PD=2
    ∴OP=OA+AP=3+2=5
    ∴P点坐标为(−5,0)
    即m=−5
    ∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
    故答案为:
    【点睛】
    本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
    4、
    【解析】
    【分析】
    先利用切线长定理求得OC=,再判断出当点D运动到线段QA上时,AD取得最小值,
    然后利用勾股定理求解即可.
    【详解】
    解:⊙O 与Rt△ABC三边的切点分别为E、F、G,连接OE、OF、OG、OC,

    ∵⊙O是Rt△ABC内切圆,∠ACB=90°,BC=3,AC=4,
    ∴CE=CF,BE=BG,AF=AG,则四边形OECF是正方形,AB==5,
    设正方形OECF的边长为x,则BE=BG=3-x,AF=AG=4-x,
    依题意得:3-x+4-x=5,
    解得:x=1,
    ∴OC=,
    ∵CD⊥l,即∠CDO=90°,
    ∴点D在以OC为直径的⊙Q上,

    连接QA,过点Q作QP⊥AC于点P,
    当点D运动到线段QA上时,AD取得最小值,
    ∴CP=QP=,AP=AC-CP=,⊙Q的半径为QD=,
    ∴QA=,
    ∴AD的最小值为AQ-QD=,
    故答案为:.
    【点睛】
    本题考查了内心的性质,切线长定理,圆周角定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.
    5、60°或120°
    【解析】
    【分析】
    如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.
    【详解】
    解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,

    作OF⊥BC,由垂径定理可知,F为BC的中点,
    ∵BC=,
    ∴CF=BF=BC=× =,
    又因为半径为3,
    ∵OC=3,
    在Rt△FOC中,cos∠OCF= =÷3=,
    ∴∠OCF=30°,
    ∵OC=OB,
    ∴∠OCF=∠OBF=30°,
    ∴∠COB=120°,
    ∴∠D=∠COB=×120°=60°,
    又圆内接四边形的对角互补,
    ∴∠E=120°,
    则弦BC所对的圆周角为60°或120°.
    故答案为:60°或120°.
    【点睛】
    此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.
    (2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.
    (1)
    证明:连接OD,
    ∵AC是直径,
    ∴∠ADC=90°,
    ∴∠BDC=180°﹣∠ADC=90°,
    ∵E是BC的中点,
    ∴,
    ∴∠EDC=∠ECD,
    ∵OC=OD,
    ∴∠ODC=∠OCD,
    ∴∠EDC+∠ODC=∠ECD +∠OCD,
    即∠ACB=∠ODE,
    ∵∠ACB=90°,
    ∴∠ODE=90°,
    又∵OD是半径,
    ∴DE是⊙O的切线.

    (2)
    解:设OD=x,
    ∵DF⊥AC,AD=5,DF=3,
    ∴,
    在三角形ADF中,

    解得,,
    ⊙O的半径为.
    【点睛】
    本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.
    2、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    3、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;

    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.

    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
    4、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,

    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    5、 (1)①(4,3)或C(4,−3),,②,
    (2)
    【解析】
    【分析】
    (1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
    (2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
    (1)
    ①如图1中,

    在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
    圆心C的坐标为(4,3),半径为3,
    根据对称性可知点C(4,−3)也满足条件,
    故答案是:(4,3)或C(4,−3),,
    ②y轴的正半轴上存在线段AB的“等角点”。
    如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,

    ∵⊙C的半径,
    ∴⊙C与y轴相交,
    设交点为,,此时,在y轴的正半轴上,
    连接、、CA,则==CA =r=3,
    ∵CD⊥y轴,CD=4,,
    ∴,
    ∴,;
    当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
    故答案为:,
    (2)
    当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
    如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
    如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
    连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,

    ∵点P,点N在⊙E上,
    ∴∠APB=∠ANB,
    ∵∠ANB是△MAN的外角,
    ∴∠ANB>∠AMB,
    即∠APB>∠AMB,
    此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
    ∵⊙E与y轴相切于点P,则EP⊥y轴,
    ∴四边形OPEF是矩形,OP=EF,PE=OF=4,
    ∴⊙E的半径为4,即EA=4,
    ∴在Rt△AEF中,,
    ∴,
    即 .
    故答案为:
    【点睛】
    本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.

    相关试卷

    数学第29章 直线与圆的位置关系综合与测试精品课后复习题:

    这是一份数学第29章 直线与圆的位置关系综合与测试精品课后复习题,共29页。试卷主要包含了如图,,以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试,共36页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。

    2021学年第29章 直线与圆的位置关系综合与测试精品同步练习题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品同步练习题,共34页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map