搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案详解)

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案详解)第1页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案详解)第2页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案详解)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品练习

    展开

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共33页。试卷主要包含了如图所示,在的网格中,A,下列四个命题中,真命题是等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系章节测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )

    A. B.12 C. D.
    2、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    3、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
    A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
    4、如图,与的两边分别相切,其中OA边与⊙C相切于点P.若,,则OC的长为( )

    A.8 B. C. D.
    5、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )

    A. B. C. D.
    6、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )

    A.外心 B.重心 C.中心 D.内心
    7、下列四个命题中,真命题是( )
    A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
    C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
    8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    9、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为(  )

    A.12+2π B.4+π C.24+2π D.12+14π
    10、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
    A.4 B.3 C.2 D.1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
    ①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    2、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
    3、在Rt△ABC中,∠ACB=90°,BC=3,AC=4,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是=____.

    4、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

    5、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

    (1)点M的纵坐标为______;
    (2)当最大时,点P的坐标为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    2、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.

    (1)求证:是的切线;
    (2)若,,求半径的长.
    3、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
    【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.

    (1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
    (2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
    (3)如图2,连接CE,在点E、F的运动过程中.
    ①试说明点D在△CME的外接圆O上;
    ②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
    4、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.
    5、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.
    【详解】
    解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,

    ∵直线分别与x轴、y轴相交于点A、B,
    ∴点A(4,0),点B(0,-3),
    ∴OB=3,OA=4,
    ∴,
    ∵四边形ACDO是正方形,
    ∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,
    ∴∠EDN=∠NAF,∠DEN=∠AFN,
    又∵DE=AF,
    ∴△DEN≌△AFN(ASA),
    ∴DN=AN,EN=NF,
    ∴点N是AD的中点,即点N是OC的中点,
    ∴ON=NC=2,
    ∵OH⊥EF,
    ∴∠OHN=90°,
    ∴点H在以ON直径的圆上运动,
    ∴当点H在QM的延长线上时,点H到AB的距离最大,
    ∵点M是ON的中点,
    ∴OM=MN=,
    ∵MP⊥OP,∠COA=45°,
    ∴OP=MP=1,
    ∴AP=3,
    ∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,
    ∴∠AKQ=∠ABO=∠MKP,
    又∵∠AOB=∠MPK=90°,
    ∴△MPK∽△AOB,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵∠AKQ=∠ABO,∠OAB=∠KAQ,
    ∴△AKQ∽△ABO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴点H到AB的最大距离为,
    ∴△HAB面积的最大值,
    故选:D.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.
    2、B
    【解析】
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    3、A
    【解析】
    【分析】
    已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
    【详解】
    ∵⊙O的半径为3,若PO=2,
    ∴2<3,
    ∴点P与⊙O的位置关系是点P在⊙O内,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
    4、C
    【解析】
    【分析】
    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
    【详解】
    解:如图所示,连接CP,
    ∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
    ∴∠CPO=90°,∠COP=45°,
    ∴∠PCO=∠COP=45°,
    ∴CP=OP=4,
    ∴,
    故选C.

    【点睛】
    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
    5、D
    【解析】
    【分析】
    过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
    【详解】
    解:过点O作OH⊥BC于点H,连接AO,BO,

    ∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵O为三角形外心,
    ∴∠OAH=30°,
    ∴OH=OB=1,
    ∴BH=,AH=-AO+OH=2+1=3


    故选:D
    【点睛】
    本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
    6、A
    【解析】
    【分析】
    根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心
    【详解】
    解:∵
    ∴O是△ABD的外心
    故选A
    【点睛】
    本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.
    7、B
    【解析】
    【分析】
    利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
    【详解】
    解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
    B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
    C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
    D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
    故选:B
    【点睛】
    本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
    8、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    9、A
    【解析】
    【分析】
    正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.
    【详解】
    解:正三角形的面积为:,
    三个小半圆的面积为:,中间大圆的面积为:,
    所以阴影部分的面积为:,
    故选:
    【点睛】
    本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.
    10、A
    【解析】
    【分析】
    根据点与圆的位置关系得出OP>3即可.
    【详解】
    解:∵⊙O的半径为3,点P在⊙O外,
    ∴OP>3,
    故选:A.
    【点睛】
    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
    二、填空题
    1、②③④
    【解析】
    【分析】
    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
    【详解】
    ∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
    ∴∠CMH=90°,
    ∵四边形ABCD是正方形,
    ∴∠CMH=∠CDH=90°,
    ∵CM=CD,CH=CH,
    ∴△CMH≌△CDH,
    ∴HD=HM,∠HCM=∠HCD,
    同理可证,∴GM=GB,∠GCB=∠GCM,
    ∴GB+DH=GH,无法确定HD=2BG,
    故①错误;
    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
    ∴2∠HCM+2∠GCM=90°,
    ∴∠HCM+∠GCM=45°,
    即∠GCH=45°,
    故②正确;

    ∵△CMH≌△CDH,BD是正方形的对角线,
    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
    =∠DHF +∠HDF+∠HFD
    =180°,
    根据对角互补的四边形内接于圆,
    ∴H,F,E,G四点在同一个圆上,
    故③正确;
    ∵正方形ABCD的边长为1,

    =1
    =,∠GAH=90°,AC=
    取GH的中点P,连接PA,
    ∴GH=2PA,
    ∴=,
    ∴当PA取最小值时,有最大值,
    连接PC,AC,
    则PA+PC≥AC,
    ∴PA≥AC- PC,
    ∴当PC最大时,PA最小,
    ∵直径是圆中最大的弦,
    ∴PC=1时,PA最小,
    ∴当A,P,C三点共线时,且PC最大时,PA最小,
    ∴PA=-1,
    ∴最大值为:1-(-1)=2-,
    ∴四边形CGAH面积的最大值为2,
    ∴④正确;
    故答案为: ②③④.
    【点睛】
    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
    2、外
    【解析】
    【分析】
    直接根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径是5,点A到圆心O的距离是7,
    即点A到圆心O的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    3、
    【解析】
    【分析】
    先利用切线长定理求得OC=,再判断出当点D运动到线段QA上时,AD取得最小值,
    然后利用勾股定理求解即可.
    【详解】
    解:⊙O 与Rt△ABC三边的切点分别为E、F、G,连接OE、OF、OG、OC,

    ∵⊙O是Rt△ABC内切圆,∠ACB=90°,BC=3,AC=4,
    ∴CE=CF,BE=BG,AF=AG,则四边形OECF是正方形,AB==5,
    设正方形OECF的边长为x,则BE=BG=3-x,AF=AG=4-x,
    依题意得:3-x+4-x=5,
    解得:x=1,
    ∴OC=,
    ∵CD⊥l,即∠CDO=90°,
    ∴点D在以OC为直径的⊙Q上,

    连接QA,过点Q作QP⊥AC于点P,
    当点D运动到线段QA上时,AD取得最小值,
    ∴CP=QP=,AP=AC-CP=,⊙Q的半径为QD=,
    ∴QA=,
    ∴AD的最小值为AQ-QD=,
    故答案为:.
    【点睛】
    本题考查了内心的性质,切线长定理,圆周角定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.
    4、6
    【解析】
    【分析】
    依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
    【详解】
    设直角三角形中能容纳最大圆的半径为:;
    依据直角三角形的性质:可得斜边长为:
    依据直角三角形面积公式:,即为;
    内切圆半径面积公式:,即为;
    所以,可得:,所以直径为:;
    故填:6;
    【点睛】
    本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
    5、 5 (4,0)
    【解析】
    【分析】
    (1)根据点M在线段AB的垂直平分线上求解即可;
    (2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
    【详解】
    解:(1)∵⊙M为△ABP的外接圆,
    ∴点M在线段AB的垂直平分线上,
    ∵A(0,2),B(0,8),
    ∴点M的纵坐标为:,
    故答案为:5;
    (2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
    理由:
    若点是x轴正半轴上异于切点P的任意一点,
    设交⊙M于点E,连接AE,则∠AEB=∠APB,
    ∵∠AEB是ΔAE的外角,
    ∴∠AEB>∠AB,
    ∵∠APB>∠AB,即点P在切点处时,∠APB最大,
    ∵⊙M经过点A(0,2)、B(0,8),
    ∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
    ∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
    设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
    而∠POD=90°,
    ∴四边形OPMD是矩形,从而OP=MD,
    由勾股定理,得
    MD=,
    ∴OP=MD=4,
    ∴点P的坐标为(4,0),
    故答案为:(4,0).

    【点睛】
    本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
    三、解答题
    1、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    2、 (1)证明见解析
    (2)⊙O半径的长为
    【解析】
    【分析】
    (1)根据角度的数量关系,可得,即,进而可证是的切线;
    (2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
    (1)
    证明:∵是的直径




    ∴,

    ∴是的切线;
    (2)
    解:∵,



    ∵,

    ∴,


    ∴,
    在中,,即

    ∴半径长为.
    【点睛】
    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
    3、 (1)见解析
    (2)
    (3)①见解析;②
    【解析】
    【分析】
    (1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
    (2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
    (3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
    (1)
    四边形是正方形,

    又的运动速度都是2cm/s,








    (2)
    ∵.
    ∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
    如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
    故答案为:
    (3)
    ①如图3.由前面结论可知:
    ∴△CME的外接圆的圆心O是斜边CE的中点,

    在Rt△CDE中,,O是CE的中点.
    ∴,

    ∴点D、C、M、E在同一个圆()上,
    即点D在△CME的外接圆上;.
    ②.
    如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
    如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
    ∵AB与相切,
    ∴,
    又∵,
    ∴,

    设的半径为R.由题意得:
    在Rt△CHO中,,解得

    ∴,即
    ∴如图5,当时,与正方形的各边共有6个交点.

    【点睛】
    本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
    4、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
    5、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共34页。试卷主要包含了如图,一把宽为2cm的刻度尺,以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品精练:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品精练,共35页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共35页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map