开学活动
搜索
    上传资料 赚现金

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案解析)

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案解析)第1页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案解析)第2页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系章节测试试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。
    九年级数学下册第二十九章直线与圆的位置关系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是(       A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形2、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(       A. B. C. D.3、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是(       A.0 B.1 C.2 D.无法确定4、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(       A. B.C. D.5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(       )cm.A.3π B.6π C.12π              D.18π6、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为(       A.1 B. C. D.7、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为(     A. B.C.3 D.8、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是(  )A.18° B.28° C.36° D.45°9、如图,正方形ABCD的边长为8,若经过CD两点的⊙O与直线AB相切,则⊙O的半径为(       A.4.8 B.5 C.4 D.410、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为(       A.10cm B.8cm C.6cm D.5cm第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知正六边形的周长是24,则这个正六边形的半径为_____ .2、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.3、如图,正方形ABCD的边长为1,⊙O经过点CCM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边ABAD于点GHBDCGCH分别交于点EF,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:HD=2BG;②∠GCH=45°;③HFEG四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).4、如图,的直径,的切线,切点为于点,点的中点.若的半径为,则阴影部分的面积为________.5、两直角边分别为6、8,那么的内接圆的半径为____________.三、解答题(5小题,每小题10分,共计50分)1、如图,PAPB是圆的切线,AB为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PBC点,若AC=4,PA=3,请补全图形,并求⊙O的半径.2、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE(1)求证:AD是⊙O的切线;(2)若AE=CE=2,求⊙O的半径和线段BC的长.3、如图,直线MN交⊙OAB两点,AC是直径,AD平分∠CAM交⊙OD,过DDEMNE(1)求证:DE是⊙O的切线;(2)若DE=8,AE=6,求⊙O的半径.4、如图,四边形ACBD内接于⊙OAB是⊙O的直径,CD平分∠ACBAB于点E,点PAB延长线上,(1)求证:PC是⊙O的切线;(2)求证:(3)若,△ACD的面积为12,求PB的长.5、如图,的切线,点在上,相交于的直径,连接,若(1)求证:平分(2)当时,求的半径长. -参考答案-一、单选题1、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、A【解析】【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.3、A【解析】【分析】圆的半径为 圆心到直线的距离为时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,∴直线l相离,∴直线l与⊙O的公共点的个数为0,故选A.【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.4、A【解析】【分析】设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当上时, 上时,延长交于点 同理: 为等边三角形, 上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.5、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.【详解】如图,过点OOGAF,垂足为G∵正六边形的边心距为∴∠AOG=30°,OG=OA=2AG解得GA=1,OA=2,设圆锥的半径为r,根据题意,得2πr=解得r=故选C【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.7、C【解析】【分析】连接OAOB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OAOB,则OA=OB∵四边形ABCD是正方形,是等腰直角三角形,∵正方形ABCD的面积是18,,即:故选C.【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.8、A【解析】【分析】连接OADE,利用切线的性质和角之间的关系解答即可.【详解】解:连接OADE,如图,AC的切线,OA的半径,OAACOAC=90°ADE=36°AOE=2∠ADE=72°C=90°-∠AOE=90°-72°=18°故选:A.【点睛】本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.9、B【解析】【分析】连接EO,延长EOCDF,连接DO,设半径为x.构建方程即可解决问题.【详解】解:设⊙OAB相切于点E.连接EO,延长EOCDF,连接DO再设⊙O的半径为xAB切⊙OEEFABABCDEFCD∴∠OFD=90°,RtDOF中,∵∠OFD=90°,OF2+DF2=OD2∴(8-x2+42= x2x=5,∴⊙O的半径为5.故选:B.【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.10、D【解析】【分析】ODABCOC的延长线交圆于D,其中点为圆心,为半径,cmcm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.【详解】解:作ODABCOC的延长线交圆于D,其中点为圆心,为半径,由题意可知cmcmAC=BC=4cm设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D.【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.二、填空题1、4【解析】【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.【详解】解:∵正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又∵正六边形的周长为24,∴正六边形边长为24÷6=4,∴正六边形的半径等于4.故答案为4.【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.2、##3、②③④【解析】【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCDGM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,CM=CDCH=CHCMHCDHHD=HM,∠HCM=∠HCD同理可证,∴GM=GB,∠GCB=∠GCMGB+DH=GH,无法确定HD=2BG故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;CMHCDHBD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC=∠DHF +∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,HFEG四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,=1=,∠GAH=90°,AC=GH的中点P,连接PAGH=2PA=∴当PA取最小值时,有最大值,连接PCACPA+PCACPAAC- PC∴当PC最大时,PA最小,∵直径是圆中最大的弦,PC=1时,PA最小,∴当APC三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-∴四边形CGAH面积的最大值为2∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.4、【解析】【分析】根据题意先得出△AOE≌△DOE,进而计算出∠AOD=2∠B=100°,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积.【详解】解:连接EODO∵点EAC的中点,O点为AB的中点,OEBC∴∠AOE=∠B,∠EOD=∠BDOOB=OD∴∠B=∠BDO∴∠AOE =∠EOD在△AOE和△DOE∴△AOE≌△DOE∵点EAC的中点,AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4-=.故答案为:.【点睛】本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、5【解析】【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB==10,∵∠ACB=90°,AB是⊙O的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.三、解答题1、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点BBP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,AC=4,PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x解得x=故圆的半径为【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.2、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA     ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°,     OAAD       OA是半径,AD是⊙O的切线.          (2)解:设⊙O的半径为R,则OA=ROE=R-2.RtOAE中,解得(不合题意,舍去),延长CO交⊙OF,连接AF∵∠AEF=∠CEB,∠B=∠AFE∴△CEB∽△AEF       CF是直径,CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,AF=     BC=     【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.3、 (1)见解析(2)【解析】【分析】(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DOMN,根据平行线的性质和切线的判定即可证的结论;(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.(1)证明:连接ODOAOD∴∠OAD=∠ODAAD平分∠CAM,∠OAD=∠DAE∴∠ODA=∠DAEDOMNDEMNDEODD在⊙O上,   DE是⊙O的切线;(2)解:∵∠AED=90°,DE=8,AE=6,AD=10,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE∴△ACD∽△ADE,即AC∴⊙O的半径是【点睛】本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.4、 (1)见解析(2)见解析(3)【解析】【分析】(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.(1)连接OC,如图,AB的直径,..半径,是⊙O的切线.(2)由(1),得.平分.,即.(3)于点F,如图,平分,由勾股定理得:...解得(舍去).Rt△ACF中,由勾股定理得:由(2)得.【点睛】本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.5、 (1)见解析(2)的半径长为【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接的切线,,即平分(2)解:如图,连接中,由勾股定理得:的直径,,即解得:的半径长为【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键. 

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步练习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步练习题,共40页。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共34页。试卷主要包含了如图,一把宽为2cm的刻度尺,以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品练习:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共33页。试卷主要包含了如图所示,在的网格中,A,下列四个命题中,真命题是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map