开学活动
搜索
    上传资料 赚现金

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专项训练试卷(含答案详解)

    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专项训练试卷(含答案详解)第1页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专项训练试卷(含答案详解)第2页
    2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专项训练试卷(含答案详解)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试精品达标测试

    展开

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品达标测试,共27页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )

    A. B. C. D.
    2、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π
    3、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是(  )

    A.30° B.36° C.45° D.72°
    4、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    6、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    7、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
    A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
    8、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°
    9、下列四个命题中,真命题是( )
    A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
    C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
    10、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )

    A.10 B.11 C.12 D.13
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).

    2、如图,是的直径,是的切线,切点为,交于点,点是的中点.若的半径为,,,则阴影部分的面积为________.

    3、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.

    4、已知五边形是的内接正五边形,则的度数为______.
    5、已知正多边形的半径与边长相等,那么正多边形的边数是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在RtABC中,∠ACB=Rt∠,以AC为直径的半圆⊙O交AB于点D,E为BC的中点,连结DE、CD.过点D作DF⊥AC于点F.

    (1)求证:DE是⊙O的切线;
    (2)若AD=5,DF=3,求⊙O的半径.
    2、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.

    (1)求证:;
    (2)求证:AF是⊙O的切线.
    3、如图,中,.

    (1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
    (2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
    4、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.
    5、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°

    (1)试说明:直线为⊙P的切线.
    (2)若∠B=30°,AD=2,求CD的长.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,

    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    2、B
    【解析】
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    3、B
    【解析】
    【分析】
    连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
    【详解】
    解:如图,连接OC,OD.

    ∵五边形ABCDE是正五边形,
    ∴∠COD==72°,
    ∴∠CPD=∠COD=36°,
    故选:B
    【点睛】
    本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    5、B
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选:B.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    6、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    7、A
    【解析】
    【分析】
    已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
    【详解】
    ∵⊙O的半径为3,若PO=2,
    ∴2<3,
    ∴点P与⊙O的位置关系是点P在⊙O内,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
    8、B
    【解析】
    【分析】
    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
    【详解】
    解:∵正五边形ABCDE中,
    ∴∠BCD==108°,CB=CD,
    ∴∠CBD=∠CDB=(180°-108°)=36°,
    故选:B.
    【点睛】
    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
    9、B
    【解析】
    【分析】
    利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
    【详解】
    解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
    B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
    C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
    D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
    故选:B
    【点睛】
    本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
    10、A
    【解析】
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    故选:A.

    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    二、填空题
    1、①②③
    【解析】
    【分析】
    根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
    【详解】
    解:如图, 是的两条切线,
    故①正确,

    故②正确,
    是的两条切线,

    取的中点,连接,则
    ∴以为圆心,为半径作圆,则共圆,故③正确,
    M是外接圆的圆心,

    与题干提供的条件不符,故④错误,
    综上:正确的说法是①②③.
    故填①②③.

    【点睛】
    本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
    2、
    【解析】
    【分析】
    根据题意先得出△AOE≌△DOE,进而计算出∠AOD=2∠B=100°,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积.
    【详解】
    解:连接EO、DO,

    ∵点E是AC的中点,O点为AB的中点,
    ∴OE∥BC,
    ∴∠AOE=∠B,∠EOD=∠BDO,
    ∵OB=OD,
    ∴∠B=∠BDO,
    ∴∠AOE =∠EOD,
    在△AOE和△DOE中

    ∴△AOE≌△DOE,
    ∵点E是AC的中点,
    ∴AE=AC=2.4,
    ∵∠AOD=2∠B=2×50°=100°,
    ∴图中阴影部分的面积=2•×2×2.4-=.
    故答案为:.
    【点睛】
    本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    3、-2
    【解析】
    【分析】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
    【详解】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
    ∵直线AB的解析式为
    当x=0时,y=5,当y=0时,x=5
    ∴B(0,5),A(5,0)
    ∴AO=BO,△AOB是等腰直角三角形
    ∴∠BAO=90°
    当CN⊥AB时,则△ACN是等腰直角三角形
    ∴CN=AN
    ∵C
    ∴AC=7
    ∵AC2=CN2+AN2=2CN2
    ∴CN=
    当 C、M、N三点共线时,长度最小
    即MN=CN-CM=-2
    故答案为:-2.

    【点睛】
    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
    4、72°##72度
    【解析】
    【分析】
    根据正多边形的中心角的计算公式: 计算即可.
    【详解】
    解:∵五边形ABCDE是⊙O的内接正五边形,
    ∴五边形ABCDE的中心角∠AOB的度数为 =72°,
    故答案为:72°.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.
    5、六
    【解析】
    【分析】
    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
    【详解】
    解:设这个正多边形的边数为n,
    ∵正多边形的半径与边长相等,
    ∴OA=OB=AB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴,
    ∴,
    ∴正多边形的边数是六,
    故答案为:六.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.
    (2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.
    (1)
    证明:连接OD,
    ∵AC是直径,
    ∴∠ADC=90°,
    ∴∠BDC=180°﹣∠ADC=90°,
    ∵E是BC的中点,
    ∴,
    ∴∠EDC=∠ECD,
    ∵OC=OD,
    ∴∠ODC=∠OCD,
    ∴∠EDC+∠ODC=∠ECD +∠OCD,
    即∠ACB=∠ODE,
    ∵∠ACB=90°,
    ∴∠ODE=90°,
    又∵OD是半径,
    ∴DE是⊙O的切线.

    (2)
    解:设OD=x,
    ∵DF⊥AC,AD=5,DF=3,
    ∴,
    在三角形ADF中,

    解得,,
    ⊙O的半径为.
    【点睛】
    本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.
    2、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,

    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    3、 (1)见解析
    (2)cm
    【解析】
    【分析】
    (1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
    (2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
    ①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
    ②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
    (1)
    解:如图,

    (2)
    解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
    ①∵,∴设AC=3x,AB=5x,
    ∴BC==4x,
    ∵的周长为12cm,
    ∴3x+4x+5x=12,
    ∴x=1,
    ∴AC=3,AB=5,
    ∵⊙O 与 AB 、 BC 所在直线相切
    ∴BE=BC=4,
    ∴AE=AB-BE=5-4=1,AO=3-r,
    在Rt△AOE中,
    ∵AO2=AE2+OE2,
    ∴(3-r)2=12+r2,
    ∴r=;

    ②∵,∴设AC=3x,AB=5x,
    ∴BC==4x,
    ∵,
    ∴4x=12,
    ∴x=1,
    ∴AC=3,AB=5,
    ∵⊙O 与 AB 、 BC 所在直线相切
    ∴BE=BC=4,
    ∴AE=AB-BE=5-4=1,AO=3-r,
    在Rt△AOE中,
    ∵AO2=AE2+OE2,
    ∴(3-r)2=12+r2,
    ∴r=;
    即⊙O的半径为cm.
    【点睛】
    本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
    4、 (1)见解析
    (2)4
    【解析】
    【分析】
    (1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
    (2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
    (1)
    证明:连接OD,

    ∵∠ACB=90°,AC=BC,
    ∴∠ABC=45°,
    ∴∠COD=2∠ABC=90°,
    ∵四边形GDEC是平行四边形,
    ∴DE∥CG,
    ∴∠ODE+∠COD=180°,
    ∴∠ODE=90°,即OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线;
    (2)
    解:设⊙O的半径为r,
    ∵四边形GDEC是平行四边形,
    ∴CG=DE=7,DG=CE=5,
    ∵∠GOD=90°,
    ∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
    解得:r1=3,r2=4,
    当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
    ∴r=4,即⊙O的半径4.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
    (2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
    (1)
    连接PC,
    ∵PC=PB,
    ∴∠B=∠PCB,
    ∴∠APC=2∠B,
    ∵2∠B+∠DAB=180°,
    ∴∠DAP+∠APC=180°,
    ∴PC∥DA,
    ∵∠ADC=90°,
    ∴∠DCP=90°,
    即DC⊥CP,
    ∴直线CD为⊙P的切线;

    (2)
    连接AC,
    ∵∠B=30°,
    ∴∠CPA=2∠B=60°,
    ∵AP=CP,∠CPA=60°,
    ∴△APC为等边三角形,
    ∵∠DCP=90°,
    ∴∠DCA=90°-∠ACP=90°-60°=30°,
    ∵AD=2,∠ADC=90°,
    ∴AC=2AD=4,
    ∴CD=.
    【点睛】
    本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共33页。试卷主要包含了下列说法正确的是,如图,,若O是ABC的内心,当时,,如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步练习题,共32页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map