![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12734658/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12734658/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12734658/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步练习题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步练习题,共32页。
九年级数学下册第二十九章直线与圆的位置关系综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知正三角形外接圆半径为,这个正三角形的边长是( )
A. B. C. D.
2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10 B.11 C.12 D.13
3、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
4、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )
A.14cm B.8cm C.7cm D.9cm
5、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A. B. C. D.
6、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
7、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
8、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )
A.1 B. C. D.
9、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
10、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
二、填空题
1、##0.8
【解析】
【分析】
连接OI,BI,作OE⊥AC,可证△AOD是等腰三角形,然后证明OD∥BC,进而∠ADO=∠ACB,解三角形AOD即可.
【详解】
解:如图,连接OI并延长交AC于D,连接BI,
∵AI与⊙O相切,
∴AI⊥OD,
∴∠AIO=∠AID=90°,
∵I是△ABC的内心,
∴∠OAI=∠DAI,∠ABI=∠CBI,
∵AI=AI,
∴△AOI≌△ADI(ASA),
∴AO=AD,
∵OB=OI,
∴∠OBI=∠OIB,
∴∠OIB=∠CBI,
∴OD∥BC,
∴∠ADO=∠C,
作OE⊥AC于E,
∵tan∠BAC==,
∴不妨设OE=24k,AE=7k,
∴OA=AD=25k,
∴DE=AD﹣AE=18k,
∴OD==30k,
∴sin∠ACB=== .
故答案是:
【点睛】
本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键.
2、
【解析】
【分析】
根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.
【详解】
如图,连接BO,OC,OA,
由题意得:△BOC,△AOB都是等边三角形,
∴∠AOB=∠OBC=60°,
∴OA∥BC,
∴,
.
故答案为:.
【点睛】
本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出.
3、25或65
【解析】
【分析】
由切线性质得出∠OCP=90°,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得∠CAB或∠CBA的度数即可解答.
【详解】
解:如图1,连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,即∠OCP=90°,
∵∠CPO=40°,
∴∠POC=90°-40°=50°,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠POC=2∠CAB,
∴∠CAB=25°,
如图2,∠CBA=25°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠CBA=65°,
综上,∠CAB=25°或65°.
【点睛】
本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键.
4、
【解析】
【分析】
连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
【详解】
解:如图,连接OE,
∵以CD为直径的⊙与AB相切于点E,
∴OE⊥BE.
设∠EOD=n°,
∵OD= CD=1,弧DE的长为π,
∴=π.
∴∠EOD=60°.
∴∠B=30°,∠COE=120°.
∴OB=2OE=2,BE=,AB=2AC,
∵AC=AE,
∴AC=BE=.
∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
=××3﹣﹣×1×=﹣.
故答案是:﹣.
【点睛】
考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
5、相切或相交
【解析】
【详解】
首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
【分析】
解:∵x2﹣5x+6=0,
(x﹣2)(x﹣3)=0,
解得:x1=2,x2=3,
∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
∴当半径为2时,直线l与圆O的的位置关系是相切,
当半径为3时,直线l与圆O的的位置关系是相交,
综上所述,直线l与圆O的的位置关系是相切或相交.
故答案为:相切或相交.
【点睛】
本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
三、解答题
1、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
4、 (1)证明见解析
(2)⊙O半径的长为
【解析】
【分析】
(1)根据角度的数量关系,可得,即,进而可证是的切线;
(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
(1)
证明:∵是的直径
∴
∴
∵
∴
∴,
∴
∴是的切线;
(2)
解:∵,
∴
∵
∴
∵,
∴
∴,
∵
∴
∴,
在中,,即
∴
∴半径长为.
【点睛】
本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
5、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
相关试卷
这是一份数学冀教版第29章 直线与圆的位置关系综合与测试精品同步测试题,共31页。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。
这是一份数学冀教版第29章 直线与圆的位置关系综合与测试精品练习,共39页。试卷主要包含了若O是ABC的内心,当时,,下列说法正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)