初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业
展开九年级数学下册第二十九章直线与圆的位置关系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定
2、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是( )
A.18° B.28° C.36° D.45°
3、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10 B.11 C.12 D.13
4、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
A.① B.② C.③ D.①或③
5、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )
A.70° B.50° C.20° D.40°
6、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).
A. B. C. D.
7、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
8、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54° B.58° C.64° D.68°
9、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A. B. C. D.
10、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.
2、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
3、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
4、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
5、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
2、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.
(1)小明给出下列解答,请你补全小明的解答.
小明的解答
过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴ .
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 ,
∴ .
(2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
(3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
4、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.
(1)求证:AD是O的切线.
(2)若O的半径为4,,求平行四边形OAEC的面积.
5、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.
【详解】
解:∵⊙O的半径分别是3,点P到圆心O的距离为4,
∴d>r,
∴点P与⊙O的位置关系是:点在圆外.
故选:A.
【点睛】
本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.
2、A
【解析】
【分析】
连接OA,DE,利用切线的性质和角之间的关系解答即可.
【详解】
解:连接OA,DE,如图,
∵AC是的切线,OA是的半径,
∴OAAC
∠OAC=90°
∠ADE=36°
AOE=2∠ADE=72°
∠C=90°-∠AOE=90°-72°=18°
故选:A.
【点睛】
本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.
3、A
【解析】
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
4、B
【解析】
【分析】
作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.
【详解】
解:作AD⊥BC于D,
∵∠B=45°,AB=6;
∴,
设三角形ABC1的外接圆为O,连接OA、OC1,
∵∠B=45°,
∴∠O=90°,
∵外接圆半径为4,
∴;
∵
∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;
当AC=8时,圆A与射线BD只有一个交点;当AC= 时,圆A与射线BD有两个交点;
故选:B.
【点睛】
本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.
5、D
【解析】
【分析】
首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
【详解】
解:连接OA,OB,
∵PA,PB为⊙O的切线,
∴∠OAP=∠OBP=90°,
∵∠ACB=70°,
∴∠AOB=2∠P=140°,
∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
故选:D.
【点睛】
此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
6、D
【解析】
【分析】
连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
【详解】
解:连接、,
,的内接正六边形,
,
∴△DOE是等边三角形,
∴∠DOM=30°,
设,则
,
解得:,
,
根据图可得:,
,
.
故选:D.
【点睛】
本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
7、A
【解析】
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
8、C
【解析】
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
9、D
【解析】
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
10、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
二、填空题
1、相切或相交
【解析】
【详解】
首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
【分析】
解:∵x2﹣5x+6=0,
(x﹣2)(x﹣3)=0,
解得:x1=2,x2=3,
∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
∴当半径为2时,直线l与圆O的的位置关系是相切,
当半径为3时,直线l与圆O的的位置关系是相交,
综上所述,直线l与圆O的的位置关系是相切或相交.
故答案为:相切或相交.
【点睛】
本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
2、圆内
【解析】
【分析】
根据点与圆的位置关系进行解答即可得.
【详解】
解:∵点到圆心的距离d=4<5=r,
∴该点P在内,
故答案为:圆内.
【点睛】
本题考查了点与圆的位置关系,解题的关键是熟记点与圆的位置关系.
3、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
4、 直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
【解析】
【分析】
连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
【详解】
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上,
∴∠OAP=90°(直径所对的圆周角是直角),
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
同理可证直线PB是⊙O的切线,
故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.
5、3cm
【解析】
【分析】
根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
【详解】
∵⊙O的直径为6cm,
∴⊙O的半径为3cm,
∵点P在⊙O上,
∴.
故答案为:3cm.
【点睛】
本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
2、 (1)OP+PQ>ON; OP=OM;PQ>MN
(2)见解析
(3)1<r<4
【解析】
【分析】
(1)利用两点之间线段最短解答即可;
(2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
(3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
(1)
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴OP+PQ>ON.
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 OP=OM,
∴PQ>MN.
故答案为:OP+PQ>ON, OP=OM,PQ>MN;
(2)
解:如图,
⊙O是求作的图形;
(3)
(3)如图2,
作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
∴∠FEO′=∠AFE=90°,
∴AF∥EO′,
∴∠AEO′=∠BAC=60°,
∵AO′=EO′,
∴△ADO′是等边三角形,
∴AE=AO′,
∵AB=8,∠B=30°,
∴AC=AB=4,
∴AF=2,
∴⊙O的半径是1,
∴AE=AB=4,
∴1<r<4,
故答案是:1<r<4.
【点睛】
本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
4、 (1)见解析
(2)32
【解析】
【分析】
(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
(2)根据平行四边形OAEC的面积等于2倍即可求解.
(1)
证明:连接OD.
∵四边形OAEC是平行四边形,
∴,
又∵,
∴,
∵AB与相切于点B,
∴,
又∵OD是的半径,
∴AD为的切线.
(2)
∵
在Rt△AOD中,
∴平行四边形OABC的面积是
【点睛】
本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
5、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步训练题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步训练题,共32页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题,共31页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题,共36页。