![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734681/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734681/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734681/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时练习
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时练习,共39页。试卷主要包含了如图,FA等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A. B. C. D.
2、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )
A. B.
C.3 D.
3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
4、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
A. B. C. D.
5、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为( )
A.1 B.2 C.3 D.4
6、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为( )
A. B.2 C.2 D.3
7、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
8、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )
A.2cm B.2.4cm C.3cm D.3.5cm
9、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )
A.14cm B.8cm C.7cm D.9cm
10、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
2、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).
3、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.
4、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.
5、如图,在△ABC中,AB=AC=,BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _____.(结果保留π)
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
2、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
3、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.
(1)求证:AD是O的切线.
(2)若O的半径为4,,求平行四边形OAEC的面积.
4、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
①线段;②线段;③线段
(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
5、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
-参考答案-
一、单选题
1、D
【解析】
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
2、C
【解析】
【分析】
连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.
【详解】
解:如图,连接OA,OB,则OA=OB,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∵正方形ABCD的面积是18,
∴,
∴,即:
∴
故选C.
【点睛】
本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
3、B
【解析】
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
4、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
5、D
【解析】
【分析】
根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.
【详解】
解:∵点A为⊙O外的一点,且⊙O的半径为3,
∴线段OA的长度>3.
故选:D.
【点睛】
此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.
6、C
【解析】
【分析】
根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
【详解】
解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
则:、、,,
∵∠F=60°,
∴为等边三角形,,
∵△FDE的周长为12,即,
∴,即,
作,如下图:
则,,
∴,
设,则,由勾股定理可得:,
解得,,
故选C
【点睛】
此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
7、B
【解析】
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
8、B
【解析】
【分析】
如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.
【详解】
解:如图所示,过C作CD⊥AB,交AB于点D,
在Rt△ABC中,AC=3cm,BC=4cm,
根据勾股定理得:AB==5(cm),
∵S△ABC=BC•AC=AB•CD,
∴×3×4=×10×CD,
解得:CD=2.4,
则r=2.4(cm).
故选:B.
【点睛】
此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.
9、B
【解析】
【分析】
根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.
【详解】
解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,
∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,
∵△ABC周长为20cm,BC=6cm,
∴AE=AD====4(cm),
∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),
故选:B.
【点睛】
本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.
10、A
【解析】
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
二、填空题
1、3
【解析】
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
2、②③④
【解析】
【分析】
根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,
∴
=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
3、
【解析】
【分析】
由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
【详解】
解:∵正六边形ABCDEF的边长为2,
=120°,
∵∠ABC+∠BAC+∠BCA=180°,
∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
过B作BH⊥AC于H,
∴AH=CH,BH=AB=×2=1,
在Rt△ABH中,
AH= =,
∴AC=2 ,
同理可证,∠EAF=30°,
∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,
∴
∴图中阴影部分的面积为2π,
故答案为:.
【点睛】
本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
4、
【解析】
【分析】
当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
【详解】
∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
∴⊙P的半径为1
∵点A(-3,0),点 B(0,)
∴OA=3,
∴
∴∠BAO=30°
当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC
则PC⊥AB,且PC=1
∴AP=2PC=2
∴OP=OA−AP=3−2=1
∴P点坐标为(−1,0)
即m=−1
当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD
则PD⊥AB,且PD=1
∴AP=2PD=2
∴OP=OA+AP=3+2=5
∴P点坐标为(−5,0)
即m=−5
∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
故答案为:
【点睛】
本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
5、##
【解析】
【分析】
先判断出△ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可.
【详解】
解:∵AB=AC=,BC=2,
∴AB2+AC2=BC2,
∴△ABC是等腰直角三角形,
∴∠BAC=90°,
连接AD,则AD=BC=1,
则S扇形AEF=.
故答案为:.
【点睛】
本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.
三、解答题
1、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
3、 (1)见解析
(2)32
【解析】
【分析】
(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
(2)根据平行四边形OAEC的面积等于2倍即可求解.
(1)
证明:连接OD.
∵四边形OAEC是平行四边形,
∴,
又∵,
∴,
∵AB与相切于点B,
∴,
又∵OD是的半径,
∴AD为的切线.
(2)
∵
在Rt△AOD中,
∴平行四边形OABC的面积是
【点睛】
本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
4、 (1)
(2)②,③
(3)
(4)
【解析】
【分析】
(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
(1)
解:如图所示:作OD与相切,
∴,
∵,,
∴,
∴,
∴此时的角度最小,且,
∴切点在线段OD上,
∴OA的关联角为;
(2)
解:如图所示:连接,,,,
∵,,
∴,
∴切点不在线段上,不是的“关联线段”;
∵,,
∴,,
∵,
∴是的“关联线段”;
∵,
∴是的“关联线段”;
(3)
解:,,线段BD绕点O的旋转路线的半径为1的上,
当OD与相切时,
由(1)可得:,
∴当时,线段BD是的“关联线段”,
故答案为:;
(4)
解:如图所示:当m取最大值时,
M点运动最小半径是O到过点的直线l的距离是m,
∵,,
∴,
∴,
∴m的最大值为4,
如图所示:当m取小值时,
开始时存在ME与相切,
∵,,
∴,
∵,及点M所在位置,
∴,
综上可得:,
故答案为:.
【点睛】
题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
5、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
相关试卷
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品同步测试题,共36页。试卷主要包含了下面四个结论正确的是等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂检测题,共34页。试卷主要包含了如图,将的圆周分成五等分等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共33页。试卷主要包含了已知M,将一把直尺,下面四个结论正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)