搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(含答案及详细解析)

    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(含答案及详细解析)第1页
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(含答案及详细解析)第2页
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系同步测评试题(含答案及详细解析)第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题,共28页。试卷主要包含了如图,等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    2、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
    A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
    3、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    4、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )

    A.4 B.3 C.2 D.1
    5、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )

    A.2,2 B.4,4 C.4,2 D.4,
    6、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    7、如图,、是的切线,、是切点,点在上,且,则等于( )

    A.54° B.58° C.64° D.68°
    8、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 ; B.点A在⊙O上;
    C.点A在⊙O外; D.不能确定.
    9、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )

    A.1 B. C. D.
    10、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.

    2、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
    3、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
    4、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
    5、在中,,,,如果以点A为圆心,AC为半径作,那么斜边AB的中点D在______.(填“内”、“上”或者“外”)
    三、解答题(5小题,每小题10分,共计50分)
    1、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    2、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    3、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.
    4、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    5、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.

    (1)求证:AC为的切线:
    (2)若半径为2,.求阴影部分的面积.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    2、A
    【解析】
    【分析】
    直接根据点与圆的位置关系进行解答即可.
    【详解】
    解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
    ∴点P在圆内.
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
    3、D
    【解析】
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,

    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    4、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.

    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    5、B
    【解析】
    【分析】
    根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
    【详解】
    解:如图,

    ∵正六边形的任一内角为120°,
    ∴∠ABD=180°-120°=60°,
    ∴∠BAD=30°,为等边三角形,




    ∴这个正六边形半径R和扳手的开口a的值分别是4,4.
    故选:B.
    【点睛】
    本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
    6、A
    【解析】
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    7、C
    【解析】
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:


    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    8、C
    【解析】
    【分析】
    要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
    【详解】
    解:∵⊙O的半径为3cm,OA=6cm,
    ∴d>r,
    ∴点A与⊙O的位置关系是:点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    9、C
    【解析】
    【分析】
    根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
    【详解】
    如图,过点O作OG⊥AF,垂足为G,
    ∵正六边形的边心距为,
    ∴∠AOG=30°,OG=,
    ∴OA=2AG,
    ∴,
    解得GA=1,
    ∴OA=2,

    设圆锥的半径为r,根据题意,得2πr=,
    解得r=,
    故选C.
    【点睛】
    本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
    10、B
    【解析】
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    二、填空题
    1、
    【解析】
    【分析】
    由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
    【详解】
    解:∵正六边形ABCDEF的边长为2,
    =120°,
    ∵∠ABC+∠BAC+∠BCA=180°,
    ∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
    过B作BH⊥AC于H,

    ∴AH=CH,BH=AB=×2=1,
    在Rt△ABH中,
    AH= =,
    ∴AC=2 ,
    同理可证,∠EAF=30°,
    ∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,

    ∴图中阴影部分的面积为2π,
    故答案为:.
    【点睛】
    本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
    2、外
    【解析】
    【分析】
    直接根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径是5,点A到圆心O的距离是7,
    即点A到圆心O的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    3、外
    【解析】
    【分析】
    点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.据此作答.
    【详解】
    解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm,
    即点A到圆心的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    4、圆内
    【解析】
    【分析】
    根据点与圆的位置关系进行解答即可得.
    【详解】
    解:∵点到圆心的距离d=4

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练,共30页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀综合训练题,共32页。试卷主要包含了已知M,如图,FA等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品习题,共34页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map