![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步练习试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12734708/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步练习试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12734708/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第二十九章直线与圆的位置关系同步练习试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12734708/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学冀教版第29章 直线与圆的位置关系综合与测试精品同步测试题
展开
这是一份数学冀教版第29章 直线与圆的位置关系综合与测试精品同步测试题,共31页。
九年级数学下册第二十九章直线与圆的位置关系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°2、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是( )A.点B在⊙A内 B.点C在⊙A上C.直线BC与⊙A相切 D.直线BC与⊙A相离3、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).A. B. C. D.4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π5、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断6、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )A.2,2 B.4,4 C.4,2 D.4,7、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )A.12 B.14 C.16 D.188、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )A.20° B.30° C.50° D.40°9、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )A.4 B.3 C.2 D.110、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )A. B.AD平分 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接AC、AD.若∠BAC=30°,CD=2,则的长为 _____.2、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.3、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.4、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.5、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).三、解答题(5小题,每小题10分,共计50分)1、如图,已知是的直径,点在上,点在外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:是的切线.2、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.(1)试判断直线与的位置关系,并说明理由;(2)若,,求阴影部分的面积(结果保留).3、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.(1)求证:;(2)求证:AF是⊙O的切线.4、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.(1)求证:是的切线;(2)若,求阴影部分的面积.(结果保留)5、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径. -参考答案-一、单选题1、B【解析】【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、D【解析】【分析】过A点作AH⊥BC于H,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.【详解】解:过A点作AH⊥BC于H,如图,∵AB=AC,∴BH=CH=BC=4,在Rt△ABH中,AH==3,∵AB=5>3,∴B点在⊙A外,所以A选项不符合题意;∵AC=5>3,∴C点在⊙A外,所以B选项不符合题意;∴AH⊥BC,AH=3>半径,∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.故选:D.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了点与圆的位置关系和等腰三角形的性质.3、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接、,,的内接正六边形,,∴△DOE是等边三角形,∴∠DOM=30°,设,则,解得:,,根据图可得:,,.故选:D.【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.4、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5、A【解析】【分析】直接根据点与圆的位置关系进行解答即可.【详解】解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,∴点P在圆内.故选:A.【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.6、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形,∵ ∴ ∴ ∴ ∴这个正六边形半径R和扳手的开口a的值分别是4,4.故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.7、B【解析】【分析】⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.【详解】解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,则∠CDI=∠C=∠CFI=90°,ID=IF=1,∴四边形CDIF是正方形,∴CD=CF=1,由切线长定理得:AD=AE,BE=BF,CF=CD,∵直角三角形的外接圆半径为3,内切圆半径为1,∴AB=6=AE+BE=BF+AD,即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,故选:B.【点睛】本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.8、C【解析】【分析】连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.【详解】解:连接OC,∵DC切⊙O于点C,∴∠OCD=90°,∵∠A=20°,∴∠OCA=20°,∴∠DOC=40°,∴∠D=90°-40°=50°.故选:C.【点睛】本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.9、B【解析】【分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【详解】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴CG=BG,∵CD=BA,根据勾股定理可得,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;∵∠ADF=∠DAE=90°,∴∠AEF=90°,∴四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;AE=DF;∴(1)错误,(2)(3)(4)正确.故选:B.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.10、D【解析】【分析】根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.【详解】解:∵AB是的直径,∴∵CE是的切线,切点为D,∴,故A选项正确,,即AD平分,故B选项正确,设交于点,如图,∵,∴四边形是矩形,,故C选项正确若,则由于点不一定是的中点,故D选项不正确;故选D【点睛】本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.二、填空题1、【解析】【分析】连接OA,由切线的性质得出AO⊥AB,得出△OAC是等边三角形,求出∠AOD=120°,由弧长公式可得出答案.【详解】解:连接OA,∵AB是⊙O的切线,∴AO⊥AB,∴∠OAB=90°,∵∠BAC=30°,∴∠OAC=60°,∵OA=OC,∴△OAC是等边三角形,∴∠C=∠AOC=60°,∴∠AOD=120°,∵CD=2,∴的长为=.故答案为.【点睛】本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:(为圆心角的度数,R表示圆的半径).2、3、1.5【解析】【分析】根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.【详解】解:平分,平分,,交于点,点是的内心.如图,画出的内切圆,与、、分别相切于点、、,且连接,设,,,得方程组:解得:,,的面积.故答案为:1.5.【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.4、70°##70度【解析】【分析】连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OA、OB,∵PA,PB分别切⊙O于点A,B,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=∠AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.5、①②③【解析】【分析】根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【详解】解:如图, 是的两条切线, 故①正确, 故②正确, 是的两条切线, 取的中点,连接,则 ∴以为圆心,为半径作圆,则共圆,故③正确, M是外接圆的圆心, 与题干提供的条件不符,故④错误,综上:正确的说法是①②③.故填①②③.【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.三、解答题1、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.(2)解:连接AD,如图∵为直径∴∵∴∴又∵AB为直径∴AE是的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.2、 (1)BC与⊙O相切,理由见详解(2)【解析】【分析】(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.(1)解: BC与⊙O相切.证明:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切;(2)∵,∠ODB=90°,,∴,在Rt△OBD中, 由勾股定理得:,∴S△OBD= OD•BD= ,S扇形ODF= ,∴阴影部分的面积=.【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.3、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.(1)解:∵,∴,又∵,∴,∴ ;(2)解:如图,连接OA, ∵,∴,∴,∵,∴,∴,∵已知,∴,∴,∴,∴,∴AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.4、 (1)见解析(2)【解析】【分析】(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.(1)证明:连接OD, ∵,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴AE∥OD,∴∠E+∠ODE=90°,∵DE⊥AC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∵OD是圆O的半径,∴DE是⊙O的切线;(2)连接BD, ∵AB是⊙O的直径,∴∠ADB=90°,∵∠ADE=60°,∠E=90°,∴∠CAD=90°﹣∠ADE=30°,∴∠DAB=∠CAD=30°,∴AB=2BD,∵,∴∴BD=2,BA=4,∴OD=OB=2,∴△ODB是等边三角形,∴∠DOB=60°,∴△ADB的面积=AD•DB=×2×2=2,∵OA=OB,∴△DOB的面积=△ADB的面积=,∴阴影部分的面积为:△ADB的面积+扇形DOB的面积﹣△DOB的面积=2﹣=,∴阴影部分的面积为:.【点睛】本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.5、 (1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴ ∴ ∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中, ∴ ∴ 在中, ∴ 整理得, 解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共35页。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。
这是一份数学冀教版第29章 直线与圆的位置关系综合与测试精品练习,共39页。试卷主要包含了若O是ABC的内心,当时,,下列说法正确的是等内容,欢迎下载使用。