2020-2021学年第29章 直线与圆的位置关系综合与测试精品课时练习
展开
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品课时练习,共37页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
2、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
3、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
4、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )
A. B.12 C. D.
5、如图,,是的切线,,是切点,,是上的点,若,,则的度数为( )
A. B. C. D.
6、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
7、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A. B. C. D.
8、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
9、如图,中,,,点O是的内心.则等于( )
A.124° B.118° C.112° D.62°
10、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )
A.2cm B.2.4cm C.3cm D.3.5cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).
2、如图,、是的切线,其中、为切点,点在上,,则______.
3、正六边形的边心距与半径的比值为_______.
4、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接AC、AD.若∠BAC=30°,CD=2,则的长为 _____.
5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8,AE=6,求⊙O的半径.
2、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
3、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)若,△ACD的面积为12,求PB的长.
4、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
①设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,⊙C的半径是 ;
②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为 .
5、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
【详解】
解:∵半径为5的圆,直线l上一点到圆心的距离是5,
∴圆心到直线的距离等于或小于5,
∴直线和圆的位置关系为相交或相切,
故选:C.
【点睛】
本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
2、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
3、C
【解析】
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
4、D
【解析】
【分析】
先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.
【详解】
解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,
∵直线分别与x轴、y轴相交于点A、B,
∴点A(4,0),点B(0,-3),
∴OB=3,OA=4,
∴,
∵四边形ACDO是正方形,
∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,
∴∠EDN=∠NAF,∠DEN=∠AFN,
又∵DE=AF,
∴△DEN≌△AFN(ASA),
∴DN=AN,EN=NF,
∴点N是AD的中点,即点N是OC的中点,
∴ON=NC=2,
∵OH⊥EF,
∴∠OHN=90°,
∴点H在以ON直径的圆上运动,
∴当点H在QM的延长线上时,点H到AB的距离最大,
∵点M是ON的中点,
∴OM=MN=,
∵MP⊥OP,∠COA=45°,
∴OP=MP=1,
∴AP=3,
∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,
∴∠AKQ=∠ABO=∠MKP,
又∵∠AOB=∠MPK=90°,
∴△MPK∽△AOB,
∴,
∴,
∴,
∴,
∵∠AKQ=∠ABO,∠OAB=∠KAQ,
∴△AKQ∽△ABO,
∴,
∴,
∴,
∴,
∴点H到AB的最大距离为,
∴△HAB面积的最大值,
故选:D.
【点睛】
本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.
5、A
【解析】
【分析】
如图,连接先求解 再利用圆周角定理可得,从而可得答案.
【详解】
解:如图,连接
,是的切线,
故选A
【点睛】
本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.
6、A
【解析】
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
7、D
【解析】
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
8、B
【解析】
【分析】
由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
【详解】
解:∵点(2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选B.
【点睛】
本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
9、B
【解析】
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
10、B
【解析】
【分析】
如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.
【详解】
解:如图所示,过C作CD⊥AB,交AB于点D,
在Rt△ABC中,AC=3cm,BC=4cm,
根据勾股定理得:AB==5(cm),
∵S△ABC=BC•AC=AB•CD,
∴×3×4=×10×CD,
解得:CD=2.4,
则r=2.4(cm).
故选:B.
【点睛】
此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.
二、填空题
1、②③④
【解析】
【分析】
根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,
∴
=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
2、76
【解析】
【分析】
连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
【详解】
解:连接OA、OB,,
∴∠AOB=104°
∵PA、PB是⊙O的两条切线,点A、B为切点,
∴∠OAP=∠OBP=90°
∵∠APB+∠OAP+∠AOB+∠OBP=360°
∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
故答案为:76
【点睛】
本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
3、
【解析】
【分析】
设正六边形的半径是r,由正六边形的内切圆的半径是正六边形的边心距,因而是r,计算比值即可.
【详解】
解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,如上图所示,内切圆半径=,因而是r,则可知正六边形的边心距与半径的比值为.
【点睛】
本题考查正多边形的边心距与内接圆的半径之间的关系,搞清正多边形内接圆与正多边形之间的关系是解决本题的关键.
4、
【解析】
【分析】
连接OA,由切线的性质得出AO⊥AB,得出△OAC是等边三角形,求出∠AOD=120°,由弧长公式可得出答案.
【详解】
解:连接OA,
∵AB是⊙O的切线,
∴AO⊥AB,
∴∠OAB=90°,
∵∠BAC=30°,
∴∠OAC=60°,
∵OA=OC,
∴△OAC是等边三角形,
∴∠C=∠AOC=60°,
∴∠AOD=120°,
∵CD=2,
∴的长为=.
故答案为.
【点睛】
本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:(为圆心角的度数,R表示圆的半径).
5、六
【解析】
【分析】
由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
【详解】
解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:
∵半径与边长相等,
∴这个三角形是等边三角形,
∴正多边形的边数:360°÷60°=6,
∴这个正多边形是正六边形
故答案为:六.
【点睛】
本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
2、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
3、 (1)见解析
(2)见解析
(3)
【解析】
【分析】
(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
(1)
连接OC,如图,
∵AB是的直径,
,
即.
,,
,
.
,
.
.
又是半径,
是⊙O的切线.
(2)
由(1),得.
,
.
,
.
平分,
.
又,
,即.
,
.
(3)
作于点F,如图,
.
平分,,
.
,由勾股定理得:.
,,
,
.
,
.
设,
,
.
解得或(舍去).
.
Rt△ACF中,由勾股定理得:,
,.
由(2)得,
.
,,
,
,
【点睛】
本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
4、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
5、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
相关试卷
这是一份初中数学第29章 直线与圆的位置关系综合与测试精品同步测试题,共30页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后复习题,共34页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。
这是一份初中数学第29章 直线与圆的位置关系综合与测试优秀练习,共28页。