终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题(含答案及详细解析)
    立即下载
    加入资料篮
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题(含答案及详细解析)01
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题(含答案及详细解析)02
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题(含答案及详细解析)03
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共33页。

    九年级数学下册第二十九章直线与圆的位置关系专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
    A.不能构成三角形 B.这个三角形是等边三角形
    C.这个三角形是直角三角形 D.这个三角形是等腰三角形
    2、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2
    3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    4、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    5、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )

    A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
    6、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )

    A.18° B.28° C.36° D.45°
    7、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )

    A. B. C. D.
    8、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )

    A.2,2 B.4,4 C.4,2 D.4,
    9、如图所示,⊙O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与⊙O相切于点Q.则PQ的最小值为( )

    A. B. C.2 D.2
    10、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.

    2、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.

    3、已知五边形是的内接正五边形,则的度数为______.
    4、如图,正五边形ABCDE内接于⊙O,作OF⊥BC交⊙O于点F,连接FA,则∠OFA=_____°.

    5、半径为3cm的圆内有长为的弦,则此弦所对的圆周角的度数为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)
    2、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    3、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    4、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.

    (1)求证:AD是⊙O的切线;
    (2)若AE=,CE=2,求⊙O的半径和线段BC的长.
    5、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.
    【详解】
    如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,

    ∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,
    ∵,
    ∴这个三角形是直角三角形,
    故选C.
    【点睛】
    本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.
    2、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    3、B
    【解析】
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    4、A
    【解析】
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    5、A
    【解析】
    【分析】
    首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
    【详解】
    解:∵△ABC的外心即是三角形三边垂直平分线的交点,
    如图所示:EF与MN的交点O′即为所求的△ABC的外心,
    ∴△ABC的外心坐标是(﹣2,﹣1).
    故选:A

    【点睛】
    此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
    6、A
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
    【详解】
    解:如图,连接




    是的切线


    故选A
    【点睛】
    本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
    7、D
    【解析】
    【分析】
    过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
    【详解】
    解:过点O作OH⊥BC于点H,连接AO,BO,

    ∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵O为三角形外心,
    ∴∠OAH=30°,
    ∴OH=OB=1,
    ∴BH=,AH=-AO+OH=2+1=3


    故选:D
    【点睛】
    本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
    8、B
    【解析】
    【分析】
    根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
    【详解】
    解:如图,

    ∵正六边形的任一内角为120°,
    ∴∠ABD=180°-120°=60°,
    ∴∠BAD=30°,为等边三角形,




    ∴这个正六边形半径R和扳手的开口a的值分别是4,4.
    故选:B.
    【点睛】
    本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
    9、C
    【解析】
    【分析】
    由切线的性质可知OQ⊥PQ,在Rt△OPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OP⊥l时,OP最小,利用勾股定理可求得PQ的最小值.
    【详解】
    ∵PQ与⊙O相切于点Q,
    ∴OQ⊥PQ,
    ∴PQ2=OP2-OQ2=OP2-52=OP2-25,
    ∴当OP最小时,PQ有最小值,
    ∵点O到直线l的距离为7,
    ∴OP的最小值为7,
    ∴PQ的最小值=,
    故选:C.
    【点睛】
    本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.
    10、D
    【解析】
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    二、填空题
    1、
    2、1.5
    【解析】
    【分析】
    根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.
    【详解】
    解:平分,平分,,交于点,
    点是的内心.
    如图,画出的内切圆,与、、分别相切于点、、,且连接,
    设,,,得方程组:
    解得:,

    的面积.
    故答案为:1.5.

    【点睛】
    此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.
    3、72°##72度
    【解析】
    【分析】
    根据正多边形的中心角的计算公式: 计算即可.
    【详解】
    解:∵五边形ABCDE是⊙O的内接正五边形,
    ∴五边形ABCDE的中心角∠AOB的度数为 =72°,
    故答案为:72°.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.
    4、36
    【解析】
    【分析】
    连接OA,OB,OB交AF于J.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.
    【详解】
    解:连接OA,OB,OB交AF于J.
    ∵五边形ABCDE是正五边形,OF⊥BC,
    ∴,
    ∴∠AOB=72°,∠BOF=∠AOB=36°,
    ∴∠AOF=∠AOB +∠BOF=108°,
    ∵OA=OF,
    ∴∠OAF=∠OFA==36°

    故答案为:36.
    【点睛】
    本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于.
    5、60°或120°
    【解析】
    【分析】
    如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.
    【详解】
    解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,

    作OF⊥BC,由垂径定理可知,F为BC的中点,
    ∵BC=,
    ∴CF=BF=BC=× =,
    又因为半径为3,
    ∵OC=3,
    在Rt△FOC中,cos∠OCF= =÷3=,
    ∴∠OCF=30°,
    ∵OC=OB,
    ∴∠OCF=∠OBF=30°,
    ∴∠COB=120°,
    ∴∠D=∠COB=×120°=60°,
    又圆内接四边形的对角互补,
    ∴∠E=120°,
    则弦BC所对的圆周角为60°或120°.
    故答案为:60°或120°.
    【点睛】
    此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
    2、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
    3、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    4、 (1)见解析
    (2)4,
    【解析】
    【分析】
    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
    (2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
    (1)
    证明:连接OA.
    ∵,
    ∴∠AOC+∠OAD=180°,
    ∵∠AOC=2∠ABC=2×45°=90°,
    ∴∠OAD=90°,
    ∴OA⊥AD,
    ∵OA是半径,
    ∴AD是⊙O的切线.

    (2)
    解:设⊙O的半径为R,则OA=R,OE=R-2.
    在Rt△OAE中,,
    ∴,
    解得或(不合题意,舍去),
    延长CO交⊙O于F,连接AF,
    ∵∠AEF=∠CEB,∠B=∠AFE,
    ∴△CEB∽△AEF,
    ∴,
    ∵CF是直径,
    ∴CF=8,∠CAF=90°,
    又∵∠F=∠ABC=45°,
    ∴∠F=∠ACF=45°,
    ∴AF=,
    ∴,
    ∴BC=.

    【点睛】
    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
    5、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.

    相关试卷

    初中数学第29章 直线与圆的位置关系综合与测试精品课时训练: 这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课时训练,共32页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试测试题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试测试题,共32页。试卷主要包含了如图,将的圆周分成五等分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map