|试卷下载
搜索
    上传资料 赚现金
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(精选)
    立即下载
    加入资料篮
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(精选)01
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(精选)02
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(精选)03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试优秀测试题

    展开
    这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀测试题,共29页。试卷主要包含了已知M,将一把直尺等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系综合训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,的切线,是切点,上的点,若,则的度数为(      

    A. B. C. D.

    2、若OABC的内心,当时,      

    A.130° B.160° C.100° D.110°

    3、如图,中,OAB边上一点,ACBC都相切,若,则的半径为(      

    A.1 B.2 C. D.

    4、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为(    

    A. B.

    C.3 D.

    5、已知M(1,2),N(3,﹣3),Pxy)三点可以确定一个圆,则以下P点坐标不满足要求的是(      

    A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)

    6、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(      

    A.6 B. C.3 D.

    7、如图,中,,点O的内心.则等于(      

    A.124° B.118° C.112° D.62°

    8、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN,则△AMN的周长为(      

    A.14cm B.8cm C.7cm D.9cm

    9、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 (       

    A.相交 B.相离 C.相切 D.不能确定

    10、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .

    2、如图,半径为2的与正五边形ABCDE的边ABDE分别相切于点BD,则劣弧BD的长为______.

    3、Rt的两条直角边分别是一元二次方程的两根,则的外接圆半径为_____.

    4、如图,x轴交于两点,,点Py轴上的一个动点,PD于点D,则ABD的面积的最大值是________;线段PD的最小值是________.

    5、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°

        

    (1)试说明:直线为⊙P的切线.

    (2)若∠B=30°,AD=2,求CD的长.

    2、如图,在中,平分于点D,点O上,以点O为圆心,为半径的圆恰好经过点D,分别交于点EF

    (1)试判断直线的位置关系,并说明理由;

    (2)若,求阴影部分的面积(结果保留).

    3、如图,点E的内心,AE的延长线交BC于点F,交的外接圆D.过D作直线

    (1)求证:DM的切线;

    (2)求证:

    (3)若,求的半径.

    4、如图,在中,BO平分,交AC于点O,以点O为圆心,OC长为半径画

    (1)求证:AB的切线;

    (2)若,求的半径.

    5、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;

    (2)若AE=4,ED=2,求ΘO的半径.

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    如图,连接先求解 再利用圆周角定理可得,从而可得答案.

    【详解】

    解:如图,连接

    的切线,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.

    2、A

    【解析】

    【分析】

    由三角形内角和以及内心定义计算即可

    【详解】

    又∵OABC的内心

    OBOC角平分线,

    180°=180°-50°=130°

    故选:A.

    【点睛】

    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    3、D

    【解析】

    【分析】

    ODACDOEBCE,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.

    【详解】

    解:作ODACDOEBCE,如图,设⊙O的半径为r

    ∵⊙OACBC都相切,

    OD=OE=r

    而∠C=90°,

    ∴四边形ODCE为正方形,

    CD=OD=r

    ODBC

    ∴△ADO∽△ACB

    AF=AC-rBC=3,AC=4,

    代入可得,

    r=

    故选:D

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.

    4、C

    【解析】

    【分析】

    连接OAOB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.

    【详解】

    解:如图,连接OAOB,则OA=OB

    ∵四边形ABCD是正方形,

    是等腰直角三角形,

    ∵正方形ABCD的面积是18,

    ,即:

    故选C.

    【点睛】

    本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.

    5、C

    【解析】

    【分析】

    先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.

    【详解】

    解:设直线的解析式为

    将点代入得:,解得

    则直线的解析式为

    A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;

    B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;

    C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;

    D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;

    故选:C.

    【点睛】

    本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.

    6、D

    【解析】

    【分析】

    如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为

    【详解】

    解:如图所示,设圆的圆心为O,连接OCOB

    ACAB都是圆O的切线,

    ∴∠OCA=∠OBA=90°,OC=OB

    又∵OA=OA

    RtOCARtOBAHL),

    ∴∠OAC=∠OAB

    ∵∠DAC=60°,

    ∴∠AOB=30°,

    OA=2AB=6,

    ∴圆O的直径为

    故选D.

    【点睛】

    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.

    7、B

    【解析】

    【分析】

    根据三角形内心的性质得到∠OBC=ABC=25°,∠OCB=ACB=37°,然后根据三角形内角和计算∠BOC的度数.

    【详解】

    解:∵点OABC的内心,

    OB平分∠ABCOC平分∠ACB

    ∴∠OBC=ABC=×50°=25°,∠OCB=ACB=×74°=37°,

    ∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.

    故选B.

    【点睛】

    本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

    8、B

    【解析】

    【分析】

    根据切线长定理得到BFBECFCDDNNGEMGMADAE,然后利用三角形的周长和BC的长求得AEAD的长,从而求得△AMN的周长.

    【详解】

    解:∵圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN

    BFBECFCDDNNGEMGMADAE

    ∵△ABC周长为20cmBC=6cm

    AEAD=4(cm),

    ∴△AMN的周长为AM+MG+NG+ANAM+ME+AN+NDAE+AD=4+4=8(cm),

    故选:B

    【点睛】

    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AEAD的长,难度不大.

    9、A

    【解析】

    【分析】

    直接根据直线与圆的位置关系即可得出结论.

    【详解】

    解:∵⊙O的半径为6,直线m上有一动点POP=4,

    ∴直线与⊙O相交.

    故选:A

    【点睛】

    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.

    10、C

    【解析】

    【分析】

    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.

    【详解】

    解:∵PAPB为⊙O的切线,

    PA=PB

    ∵∠APB=60°,

    ∴△APB为等边三角形,

    AB=PA=5.

    故选:C.

    【点睛】

    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.

    二、填空题

    1、3cm

    【解析】

    【分析】

    根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.

    【详解】

    ∵⊙O的直径为6cm,

    ∴⊙O的半径为3cm,

    ∵点P在⊙O上,

    故答案为:3cm.

    【点睛】

    本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则

    2、##

    【解析】

    【分析】

    连接OBOD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.

    【详解】

    解:连接OBOD

    ∵五边形ABCDE是正五边形,

    ∴∠E=∠A

    ABDE与⊙O相切,

    ∴∠OBA=∠ODE=90°,

    ∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,

    ∴劣弧BD的长为

    故答案为:

    【点睛】

    本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.

    3、2.5##

    【解析】

    【分析】

    根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.

    【详解】

    解:

    解得

    Rt的两条直角边分别为3,4,

    斜边长为

    直角三角形的外接圆的圆心在斜边上,且为斜边的中点,

    的外接圆半径为

    【点睛】

    本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键.

    4、     ##0.5    

    【解析】

    【分析】

    根据题中点的坐标可得圆的直径,半径为1,分析AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.

    【详解】

    解:如图所示:当点P到如图位置时,的面积最大,

    圆的直径,半径为1

    AB定长为底,点D在圆上,高最大为圆的半径,如图所示:

    此时面积的最大值为:

    如图所示:连接AP

    PD于点D

    设点

    中,

    中,

    时,PD取得最小值,

    最小值为

    故答案为:①;②

    【点睛】

    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.

    5、6

    【解析】

    【分析】

    依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;

    【详解】

    设直角三角形中能容纳最大圆的半径为:

    依据直角三角形的性质:可得斜边长为:

    依据直角三角形面积公式:,即为

    内切圆半径面积公式:,即为

    所以,可得:,所以直径为:

    故填:6;

    【点睛】

    本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;

    三、解答题

    1、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接PC,则∠APC=2∠B,可证PCDA,证得PCCD,则结论得证;

    (2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.

    (1)

    连接PC

    PCPB

    ∴∠B=∠PCB

    ∴∠APC=2∠B

    ∵2∠B+∠DAB=180°,

    ∴∠DAP+∠APC=180°,

    PCDA

    ∵∠ADC=90°,

    ∴∠DCP=90°,

    DCCP

    ∴直线CD为⊙P的切线;

    (2)

    连接AC

    ∵∠B=30°,

    ∴∠CPA=2∠B=60°,

    AP=CP,∠CPA=60°,

    ∴△APC为等边三角形,

    ∵∠DCP=90°,

    ∴∠DCA=90°-∠ACP=90°-60°=30°,

    AD=2,∠ADC=90°,

    AC=2AD=4,

    CD=

    【点睛】

    本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.

    2、 (1)BC与⊙O相切,理由见详解

    (2)

    【解析】

    【分析】

    (1)根据题意先证明ODAC,即可证得∠ODB=90°,从而证得BC是圆的切线;

    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.

    (1)

    解: BC与⊙O相切.

    证明:∵AD是∠BAC的平分线,

    ∴∠BAD=∠CAD

    又∵OD=OA

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    ODAC

    ∴∠ODB=∠C=90°,即ODBC

    又∵BC过半径OD的外端点D

    BC与⊙O相切;

    (2)

    ,∠ODB=90°,

    RtOBD中,

    由勾股定理得:

    SOBD= ODBD= S扇形ODF=

    ∴阴影部分的面积=

    【点睛】

    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.

    3、 (1)见解析

    (2)见解析

    (3)⊙O的半径为5.

    【解析】

    【分析】

    (1)连接ODBCH,根据圆周角定理和切线的判定即可证明;

    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE

    (3)根据垂径定理和勾股定理即可求出结果.

    (1)

    证明:连接ODBCH,如图,

    ∵点E是△ABC的内心,

    AD平分∠BAC

    即∠BAD=∠CAD

    ODBCBH=CH

    DMBC

    ODDM

    DM是⊙O的切线;

    (2)

    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE

    ∴∠DBC=∠BAD

    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE

    即∠BED=∠DBE

    BD=DE

    (3)

    解:设⊙O的半径为r

    连接ODOB,如图,

    由(1)得ODBCBH=CH

    BC=8,

    BH=CH=4,

    DE=2BD=DE

    BD=2

    RtBHD中,BD2=BH2+HD2

    ∴(22=42+HD2,解得:HD=2,

    RtBHO中,

    r2=BH2+(r-2)2,解得:r=5.

    ∴⊙O的半径为5.

    【点睛】

    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.

    4、 (1)见解析

    (2)2.4.

    【解析】

    【分析】

    (1)过OODABAB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;

    (2)设圆O的半径为r,即OC=r,由BC=3r,由勾股定理求得AD=AB=3r+根据方程求解即可.

    (1)

    如图所示:过OODABAB于点D

    OCBC,且BO平分∠ABC

    OD=OC

    OC是圆O的半径

    AB与圆O相切.

    (2)

    设圆O的半径为r,即OC=r

    OCBC,且OC是圆O的半径

    BC是圆O的切线,

    AB是圆O的切线,

    BD=BC=3r

    中,

    中,

    整理得,

    解得,(不合题意,舍去)

    的半径为2.4

    【点睛】

    此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.

    5、 (1)相切,理由见解析

    (2)

    【解析】

    【分析】

    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;

    (2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.

    (1)

    解:所在直线与相切.

    理由:连接

    平分

    是半径,

    所在直线与相切.

    (2)

    解:连接

    的直径,

    又∵

    的半径为

    【点睛】

    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.

     

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题,共34页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂检测题,共37页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精练,共33页。试卷主要包含了已知M等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map