开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第1页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第2页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系定向训练试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题

    展开

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题,共28页。
    九年级数学下册第二十九章直线与圆的位置关系定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )

    A.10cm B.8cm C.6cm D.5cm
    2、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )

    A.外心 B.重心 C.中心 D.内心
    3、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    4、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是(  )

    A.4 B. C. D.3
    5、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是(  )
    A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
    6、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )
    A.4 B.5 C.6 D.7
    7、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    8、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
    A.相切 B.相离 C.相切或相交 D.相切或相离
    9、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
    A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
    10、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.

    2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.

    3、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    4、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是______.
    5、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;
    (2)若AE=4,ED=2,求ΘO的半径.
    2、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.
    3、如图,中,.

    (1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
    (2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
    4、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.

    (1)求证:AD是⊙O的切线;
    (2)若AE=,CE=2,求⊙O的半径和线段BC的长.
    5、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
    【详解】
    解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,

    由题意可知cm,cm;

    ∴AC=BC=4cm,
    设茶杯的杯口外沿半径为
    则在中,由勾股定理知
    解得
    故选D.
    【点睛】
    本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
    2、A
    【解析】
    【分析】
    根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心
    【详解】
    解:∵
    ∴O是△ABD的外心
    故选A
    【点睛】
    本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.
    3、B
    【解析】
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    4、B
    【解析】
    【分析】
    连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
    【详解】
    解:连接OD,

    ∵MD切⊙O于D,
    ∴∠ODM=90°,
    ∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
    ∴MO=2+2=4,MB=4+2=6,OD=2,
    由勾股定理得:MD===2,
    ∵BC⊥AB,
    ∴BC切⊙O于B,
    ∵DC切⊙O于D,
    ∴CD=BC,
    设CD=CB=x,
    在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
    即(2+x)2=62+x2,
    解得:x=2,
    即BC=2,
    故选:B.
    【点睛】
    本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
    5、A
    【解析】
    【分析】
    先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
    【详解】
    解:由两点距离公式可得点(8,6)到原点的距离为,
    又的半径为10,
    ∴点(8,6)到圆心的距离等于半径,
    点(8,6)在上,
    故选A.
    【点睛】
    本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
    6、A
    【解析】
    【分析】
    根据点与圆的位置关系可得,由此即可得出答案.
    【详解】
    解:的半径为5,点在内,

    观察四个选项可知,只有选项A符合,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
    7、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    8、C
    【解析】
    【分析】
    根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
    【详解】
    解:∵半径为5的圆,直线l上一点到圆心的距离是5,
    ∴圆心到直线的距离等于或小于5,
    ∴直线和圆的位置关系为相交或相切,
    故选:C.
    【点睛】
    本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
    9、A
    【解析】
    【分析】
    已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
    【详解】
    ∵⊙O的半径为3,若PO=2,
    ∴2<3,
    ∴点P与⊙O的位置关系是点P在⊙O内,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
    10、B
    【解析】
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    二、填空题
    1、或
    【解析】
    【分析】
    如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
    【详解】
    解:如图,连接 (即)分别在优弧与劣弧上,

    PM,PN分别与⊙O相切于A,B两点,




    故答案为:或
    【点睛】
    本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
    2、
    【解析】
    【分析】
    如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.
    【详解】
    解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,
    则OD⊥MN,
    ∴MD=DN,
    在Rt△ODM中,OM=180cm,OD=60cm,
    ∴cm,
    ∴cm,
    即该球在大圆内滑行的路径MN的长度为cm,
    故答案为:.

    【点睛】
    本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.
    3、
    【解析】
    【分析】
    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
    【详解】
    解:连接,如图,

    PA,PB分别与⊙O相切




    故答案为:
    【点睛】
    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
    4、相切
    【解析】
    【分析】
    本题应将原点到直线x=3的距离与半径对比即可判断.
    【详解】
    解:∵原点到直线x=3的距离为3,半径为3,
    则有3=3,
    ∴这个圆与直线x=3相切.
    故答案为:相切.
    【点睛】
    本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.
    5、圆内
    【解析】
    【分析】
    根据点与圆的位置关系进行解答即可得.
    【详解】
    解:∵点到圆心的距离d=4

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习,共32页。试卷主要包含了如图,PA,若O是ABC的内心,当时,等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试一课一练:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试一课一练,共33页。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题,共35页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map