搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含详细解析)

    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含详细解析)第1页
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含详细解析)第2页
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题测评试题(含详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共33页。试卷主要包含了如图,FA等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是(  )A.在⊙O B.在⊙O C.在⊙O D.不能确定2、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是(       A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)3、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是(  )A.18° B.28° C.36° D.45°4、如图,相切于点,连接于点,点为优弧上一点,连接,若的半径,则的长为(       A.4 B. C. D.15、如图,的两边分别相切,其中OA边与⊙C相切于点P.若,则OC的长为(       A.8 B. C. D.6、如图,FAFB分别与⊙O相切于AB两点,点C为劣弧AB上一点,过点C的切线分别交FAFBDE两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )A. B.2 C.2 D.37、如图,⊙O的半径为2PAPBCD分别切⊙O于点ABECD分别交PAPB于点CD,且PEO三点共线.若∠P=60°,则CD的长为(  )A.4 B.2 C.3 D.68、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm9、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(       A.1 B.2 C.3 D.410、如图,相切于点经过的圆心与交于,若,则       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,内切圆,则的半径为______.2、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 3、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)4、如图,过⊙O外一点P,作射线PAPB分别切⊙O于点AB,点C在劣弧AB上,过点C作⊙O的切线分别与PAPB交于点DE.则______度.5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ACBD内接于⊙OAB是⊙O的直径,CD平分∠ACBAB于点E,点PAB延长线上,(1)求证:PC是⊙O的切线;(2)求证:(3)若,△ACD的面积为12,求PB的长.2、数学课上老师提出问题:“在矩形中,的中点,边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.小明的思路是:解题应分类讨论,显然不可能与边所在直线相切,只需讨论与边相切两种情形.请你根据小明所画的图形解决下列问题:(1)如图1,当相切于点时,求的长;(2)如图2,当相切时,①求的长;②若点从点出发沿射线移动,连接的中点,则在点的移动过程中,直接写出点内的路径长为______.3、如图,AB的切线,B为切点,过点B,垂足为点E,交于点C,连接CO,并延长COAB的延长线交于点D,与交于点F,连接AC(1)求证:AC的切线:(2)若半径为2,.求阴影部分的面积.4、如图,中,(1)用直尺和圆规作,使圆心在边上,且所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“的周长为12cm;②”中选择一个作为条件,并求的半径5、如图,PAPB是圆的切线,AB为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PBC点,若AC=4,PA=3,请补全图形,并求⊙O的半径. -参考答案-一、单选题1、A【解析】【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.【详解】解:由两点距离公式可得点(8,6)到原点的距离为的半径为10,∴点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A.【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.2、A【解析】【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作ABBC的垂线,两垂线的交点即为△ABC的外心.【详解】解:∵△ABC的外心即是三角形三边垂直平分线的交点,如图所示:EFMN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:A【点睛】此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.3、A【解析】【分析】连接OADE,利用切线的性质和角之间的关系解答即可.【详解】解:连接OADE,如图,AC的切线,OA的半径,OAACOAC=90°ADE=36°AOE=2∠ADE=72°C=90°-∠AOE=90°-72°=18°故选:A.【点睛】本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.4、B【解析】【分析】连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.【详解】解:连接OBAB相切于点B∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,OA=2OB=4,故选:B.【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.5、C【解析】【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CPOAOB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,CP=OP=4,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.6、C【解析】【分析】根据切线长定理可得,,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.【详解】解:FAFB分别与⊙O相切于AB两点,过点C的切线分别交FAFBDE两点,则:∵∠F=60°,为等边三角形,∵△FDE的周长为12,即,即,如下图:,则,由勾股定理可得:解得故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.7、A【解析】【分析】,先证明,得出,得出,过点,在中,设,则,利用勾股定理求出,即可求解.【详解】解:连接PAPB,分别切⊙O于点AB是等边三角形,过点,如下图根据等腰三角形的性质,的中点,中,,则解得:故选:A.【点睛】本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.8、D【解析】【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.10、B【解析】【分析】连结CO,根据切线性质相切于点,得出OCBC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.【详解】解:连结CO相切于点OCBC∴∠COB+∠B=90°,∴∠COB=90°-∠B=90°-40°=50°,故选B.【点睛】本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.二、填空题1、1【解析】【分析】根据三角形内切圆与内心的性质和三角形面积公式解答即可.【详解】解:∵∠C=90°,AC=3,AB=5,BC==4,如图,分别连接OAOBOCODOEOF∵⊙OABC内切圆,DEF为切点,ODBCOEACOFABDEFOD=OE=OFSABC=SBOC+SAOC+SAOB=BCDO+ACOE+ABFO=BC+AC+AB)•OD∵∠ACB=90°,故答案为:1.【点睛】此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.2、4【解析】【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.3、外【解析】【分析】直接根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故答案为:外.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr4、65【解析】【分析】连接OAOCOB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OAOCOBPAPBDE与圆相切于点ABEDO平分EO平分故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.5、六【解析】【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.三、解答题1、 (1)见解析(2)见解析(3)【解析】【分析】(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.(1)连接OC,如图,AB的直径,..半径,是⊙O的切线.(2)由(1),得.平分.,即.(3)于点F,如图,平分,由勾股定理得:...解得(舍去).Rt△ACF中,由勾股定理得:由(2)得.【点睛】本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.2、 (1)BP=2(2)①4.8;②9.6【解析】【分析】(1)连接PT,由⊙PAD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在RtBPE中,用勾股定理即得BP=2(2)①由⊙PCD相切,有PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,由勾股定理得x2+22=(10-x2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过PPNEMN,由EMABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.(1)连接PT,如图:∵⊙PAD相切于点T∴∠ATP=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABPT是矩形,PT=AB=4=PEEAB的中点,BE=AB=2,RtBPE中,(2)①∵⊙PCD相切,PC=PEBP=x,则PC=PE=10-xRtBPE中,BP2+BE2=PE2x2+22=(10-x2解得x=4.8,BP=4.8;②点Q从点B出发沿射线BC移动,MAQ的中点,点M在⊙P内的路径为EM,过PPNEMN,如图:由题可知,EMABQ的中位线,EMBQ∴∠BEM=90°=∠BPNEM∴∠PNE=90°,EM=2EN∴四边形BPNE是矩形,EN=BP=4.8,EM=2EN=9.6.故答案为:9.6.【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.3、 (1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.(1)解:如图,连接OBAB的切线,,即BC是弦,,在中,,即AC的切线;(2)解:在中,由勾股定理得,中,【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.4、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙OAB的切点为E,连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3xAB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3xAB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设相切于点.连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r①∵,∴设AC=3xAB=5xBC==4x的周长为12cm∴3x+4x+5x=12,x=1,AC=3,AB=5,∵⊙O 与 ABBC 所在直线相切BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=②∵,∴设AC=3xAB=5xBC==4x∴4x=12,x=1,AC=3,AB=5,∵⊙OABBC 所在直线相切∴BE=BC=4,AE=AB-BE=5-4=1,AO=3-rRtAOE中,AO2=AE2+OE2∴(3-r)2=12+r2r=即⊙O的半径cm【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.5、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点BBP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,AC=4,PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x解得x=故圆的半径为【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习,共28页。

    数学九年级下册第29章 直线与圆的位置关系综合与测试复习练习题:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试复习练习题,共34页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map