![2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(精选含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734757/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(精选含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734757/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试练习题(精选含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734757/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀随堂练习题
展开
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀随堂练习题,共29页。
九年级数学下册第二十九章直线与圆的位置关系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )A.40° B.50° C.55° D.60°2、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )A.30° B.36° C.60° D.72°3、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )A. B.C.3 D.4、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )A.20° B.30° C.50° D.40°5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为( )A.1 B.2 C.3 D.47、的边经过圆心,与圆相切于点,若,则的大小等于( )A. B. C. D.8、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )A.14cm B.8cm C.7cm D.9cm9、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )A.3 B.4 C.5 D.610、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )A.2cm B.2.4cm C.3cm D.3.5cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.2、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.3、如图,在⊙O中,AB是⊙O的内接正六边形的一边,BC是⊙O的内接正十边形的一边,则∠ABC=______°.4、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.5、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.2、如图,中,.(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.3、如图,在RtABC中,∠ACB=Rt∠,以AC为直径的半圆⊙O交AB于点D,E为BC的中点,连结DE、CD.过点D作DF⊥AC于点F.(1)求证:DE是⊙O的切线;(2)若AD=5,DF=3,求⊙O的半径.4、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径.5、如图,PA,PB是圆的切线,A,B为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径. -参考答案-一、单选题1、C【解析】【分析】连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.【详解】解:连接OC,如图所示:∵CE与相切,∴,∴,∵,∴,∴,∴,∵,∴,故选:C.【点睛】题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.2、B【解析】【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.3、C【解析】【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA,OB,则OA=OB,∵四边形ABCD是正方形,∴,∴是等腰直角三角形,∵正方形ABCD的面积是18,∴,∴,即:∴故选C.【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.4、C【解析】【分析】连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.【详解】解:连接OC,∵DC切⊙O于点C,∴∠OCD=90°,∵∠A=20°,∴∠OCA=20°,∴∠DOC=40°,∴∠D=90°-40°=50°.故选:C.【点睛】本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.5、B【解析】【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.6、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.7、A【解析】【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接, ,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8、B【解析】【分析】根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.【详解】解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,∵△ABC周长为20cm,BC=6cm,∴AE=AD====4(cm),∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),故选:B.【点睛】本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.9、B【解析】【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.10、B【解析】【分析】如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.【详解】解:如图所示,过C作CD⊥AB,交AB于点D,在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得:AB==5(cm),∵S△ABC=BC•AC=AB•CD,∴×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm).故选:B.【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.二、填空题1、【解析】【分析】由题意易得∠OAB=90°,然后根据三角函数可进行求解.【详解】解:∵AB是⊙O的切线,∴∠OAB=90°,在Rt△OAB中,OA=5,AB=6,∴,故答案为.【点睛】本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.2、【解析】【分析】当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.【详解】∵圆心P的坐标为(1,0),⊙P与y轴相切与点O∴⊙P的半径为1∵点A(-3,0),点 B(0,)∴OA=3,∴∴∠BAO=30° 当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC则PC⊥AB,且PC=1∴AP=2PC=2∴OP=OA−AP=3−2=1∴P点坐标为(−1,0)即m=−1当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD则PD⊥AB,且PD=1∴AP=2PD=2∴OP=OA+AP=3+2=5∴P点坐标为(−5,0)即m=−5∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为故答案为:【点睛】本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.3、132°【解析】【分析】连接AO、BO、CO,根据AB是⊙O的内接正六边形的一边,可得 , ,从而得到∠ABO=60°,再由BC是⊙O的内接正十边形的一边,可得 ,BO=CO,从而得到,即可求解.【详解】解:如图,连接AO、BO、CO,∵AB是⊙O的内接正六边形的一边,∴ , ,∴ ,∵BC是⊙O的内接正十边形的一边,∴ ,BO=CO,∴,∴∠ABC=∠ABO+ ∠CBO=60°+72°=132°.故答案为:132°【点睛】本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.4、##【解析】【分析】连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.【详解】解:连接EO,并延长交圆于点G,∵四边形是矩形,∴CD=,∠D=90°,∵与相切于点,∴OE⊥CD,再结合矩形的性质可得:∴DE=CE=3.∵,∴EF=.∵与相切于点,∴∠GED=90°.∵GE是直径,∴∠GFE=90°,∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,∴∠DEF=∠EGF.∵∠D=∠∠GFE=90°,∴△DEF∽△FGE,∴,∴,∴GE=,∴的半径是,故答案为;.【点睛】本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.5、5【解析】【分析】根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.【详解】如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.【点睛】此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.三、解答题1、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接.∵,∴.∵平分,∴.∴.∴.∴.∵,∴.∴.∴.∵是半径,∴所在直线与相切.(2)解:连接.∵是的直径,∴.∴.又∵,∴.∴.∵,,,∴.∴.∴的半径为.【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.2、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.①∵,∴设AC=3x,AB=5x,∴BC==4x,∵的周长为12cm,∴3x+4x+5x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;②∵,∴设AC=3x,AB=5x,∴BC==4x,∵,∴4x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;即⊙O的半径为cm.【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.3、 (1)见解析(2)【解析】【分析】(1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.(2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.(1)证明:连接OD,∵AC是直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵E是BC的中点,∴,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠EDC+∠ODC=∠ECD +∠OCD,即∠ACB=∠ODE,∵∠ACB=90°,∴∠ODE=90°,又∵OD是半径,∴DE是⊙O的切线.(2)解:设OD=x,∵DF⊥AC,AD=5,DF=3,∴,在三角形ADF中,,解得,,⊙O的半径为.【点睛】本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.4、 (1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴ ∴ ∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中, ∴ ∴ 在中, ∴ 整理得, 解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.5、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,∵AC=4,∴PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x,∴,解得x=,故圆的半径为.【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共32页。试卷主要包含了如图,PA等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试当堂达标检测题,共37页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试复习练习题,共36页。试卷主要包含了若O是ABC的内心,当时,等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)