|试卷下载
搜索
    上传资料 赚现金
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题训练试题(精选)
    立即下载
    加入资料篮
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题训练试题(精选)01
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题训练试题(精选)02
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系专题训练试题(精选)03
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练

    展开
    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练,共31页。

    九年级数学下册第二十九章直线与圆的位置关系专题训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若OABC的内心,当时,      

    A.130° B.160° C.100° D.110°

    2、如图,⊙O是正五边形ABCDE的外接圆,点P的一点,则∠CPD的度数是(  )

    A.30° B.36° C.45° D.72°

    3、下面四个结论正确的是(      

    A.度数相等的弧是等弧 B.三点确定一个圆

    C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等

    4、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是      

    A.0 B.1 C.2 D.无法确定

    5、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(      

    A.1 B.2 C.3 D.4

    6、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN,则△AMN的周长为(      

    A.14cm B.8cm C.7cm D.9cm

    7、如图,一把直尺,60°的直角三角板和一个量角器如图摆放,A为60°角与刻度尺交点,刻度尺上数字为4,点B为量角器与刻度尺的接触点,刻度为7,则该量角器的直径是(    

          

    A.3 B. C.6 D.

    8、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是(  )

    A.在⊙O B.在⊙O C.在⊙O D.不能确定

    9、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )

    A.点BC均在⊙P B.点B在⊙P上、点C在⊙P

    C.点BC均在⊙P D.点B在⊙P上、点C在⊙P

    10、如图,BE的直径,点A和点D上的两点,过点A的切线交BE延长线于点C,若,则的度数是(      

    A.18° B.28° C.36° D.45°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,在矩形中,是边上的点,经过三点的相切于点.若,则的半径是__________.

    2、已知正六边形的周长是24,则这个正六边形的半径为_____ .

    3、如图,∠1是正五边形两条对角线的夹角,则∠1=_______度.

    4、如图,半径为2的与正五边形ABCDE的边ABDE分别相切于点BD,则劣弧BD的长为______.

    5、如图,点O和点I分别是△ABC的外心和内心,若∠BOC=130°,则∠BIC=______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点

    (1)求证:的切线;

    (2)若,求半径的长.

    2、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.

    【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CFBE交于点M,设点EF运动时问为t秒.

    (1)【问题提出】如图1,点EF分别在方形ABCD中的边ADAB上,且,连接BECF交于点M,求证:.请你先帮小明加以证明.

    (2)如图1,在点EF的运动过程中,点M也随之运动,请直接写出点M的运动路径长     cm.

    (3)如图2,连接CE,在点EF的运动过程中.

    ①试说明点D在△CME的外接圆O上;

    ②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.

    3、如图,AB的切线,B为切点,过点B,垂足为点E,交于点C,连接CO,并延长COAB的延长线交于点D,与交于点F,连接AC

    (1)求证:AC的切线:

    (2)若半径为2,.求阴影部分的面积.

    4、如图,中,

    (1)用直尺和圆规作,使圆心在边上,且所在直线相切(不写作法,保留作图痕迹);

    (2)在(1)的条件下,再从以下两个条件①“的周长为12cm;②”中选择一个作为条件,并求的半径

    5、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点

    (1)求证的切线;

    (2)若,求的半径.

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    由三角形内角和以及内心定义计算即可

    【详解】

    又∵OABC的内心

    OBOC角平分线,

    180°=180°-50°=130°

    故选:A.

    【点睛】

    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、B

    【解析】

    【分析】

    连接OCOD.求出∠COD的度数,再根据圆周角定理即可解决问题;

    【详解】

    解:如图,连接OCOD

    ∵五边形ABCDE是正五边形,

    ∴∠COD=72°,

    ∴∠CPDCOD=36°,

    故选:B

    【点睛】

    本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    3、D

    【解析】

    【分析】

    根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.

    【详解】

    解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;

    B、不在同一直线上的三点确定一个圆,故错误;

    C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;

    D、三角形的外心到三角形的三个顶点的距离相等,故正确;

    故选D

    【点睛】

    本题考查了圆的有关的概念,属于基础知识,必须掌握.

    4、A

    【解析】

    【分析】

    圆的半径为 圆心到直线的距离为时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.

    【详解】

    解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,

    ∴直线l相离,

    ∴直线l与⊙O的公共点的个数为0,

    故选A.

    【点睛】

    本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.

    5、D

    【解析】

    【分析】

    根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.

    【详解】

    解:∵点A为⊙O外的一点,且⊙O的半径为3,

    ∴线段OA的长度>3.

    故选:D.

    【点睛】

    此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.

    6、B

    【解析】

    【分析】

    根据切线长定理得到BFBECFCDDNNGEMGMADAE,然后利用三角形的周长和BC的长求得AEAD的长,从而求得△AMN的周长.

    【详解】

    解:∵圆O是△ABC的内切圆,圆O的切线MNABCA相交于点MN

    BFBECFCDDNNGEMGMADAE

    ∵△ABC周长为20cmBC=6cm

    AEAD=4(cm),

    ∴△AMN的周长为AM+MG+NG+ANAM+ME+AN+NDAE+AD=4+4=8(cm),

    故选:B

    【点睛】

    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AEAD长,难度不大.

    7、D

    【解析】

    【分析】

    如图所示,连接OAOBOC,利用切线定理可知△AOC与△AOB为直角三角形,进而可证明RtAOC≌Rt△AOB,根据三角板的角度可算出∠OAB的度数,借助三角函数求出OB的长度.

    【详解】

    解:如图所示,连接OAOBOC

    ∵三角板的顶角为60°,

    ∴∠CAB=120°,

    ACAB,与扇形分别交于一点,

    ACAB是扇形O所在圆的切线,

    OCACOBAB

    RtAOCRtAOB中,

    RtAOCRtAOB

    ∴∠OAC=∠OAB=60°,

    由题可知AB=7-4=3,

    OB=AB•tan60°=

    ∴直径为

    故选:D.

    【点睛】

    本题考查,圆的切线定理,全等三角形的判定,三角函数,在图中构造适合的辅助线是解决本题的关键.

    8、A

    【解析】

    【分析】

    先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.

    【详解】

    解:由两点距离公式可得点(8,6)到原点的距离为

    的半径为10,

    ∴点(8,6)到圆心的距离等于半径,

    点(8,6)在上,

    故选A.

    【点睛】

    本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.

    9、D

    【解析】

    【分析】

    如图所示,连接DPCP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PCPD的大小,PBPD的大小即可得到答案.

    【详解】

    解:如图所示,连接DPCP

    ∵四边形ABCD是矩形,

    ∴∠A=∠B=90°,

    AP=3,AB=8,

    BP=AB-AP=5,

    PB=PD

    ∴点C在圆P外,点B在圆P上,

    故选D.

    【点睛】

    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.

    10、A

    【解析】

    【分析】

    连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.

    【详解】

    解:如图,连接

    的切线

    故选A

    【点睛】

    本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.

    二、填空题

    1、##

    【解析】

    【分析】

    连接EO,并延长交圆于点G,在RtDEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.

    【详解】

    解:连接EO,并延长交圆于点G

    ∵四边形是矩形,

    CD=,∠D=90°,

    相切于点

    OECD,再结合矩形的性质可得:

    DE=CE=3.

    EF=

    相切于点

    ∴∠GED=90°.

    GE是直径,

    ∴∠GFE=90°,

    ∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,

    ∴∠DEF=∠EGF

    ∵∠D=∠∠GFE=90°,

    ∴△DEF∽△FGE

    GE=

    的半径是

    故答案为;

    【点睛】

    本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.

    2、4

    【解析】

    【分析】

    由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.

    【详解】

    解:∵正六边形可以由其半径分为六个全等的正三角形,

    而三角形的边长就是正六边形的半径,

    又∵正六边形的周长为24,

    ∴正六边形边长为24÷6=4,

    ∴正六边形的半径等于4.

    故答案为4.

    【点睛】

    此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.

    3、72

    【解析】

    【分析】

    根据多边形的内角和定理及正多边形的性质即可求得结果.

    【详解】

    正五边形的每个内角为

    ∵多边形为正五边形,即AB=BC=CD,如图

    ∴△ABC、△BCD均为等腰三角形,且∠ABC=∠BCD=108°

    ∴∠1=∠BCA+∠CBD=72°

    故答案为:72

    【点睛】

    本题考查了正多边形的性质及多边形的内角和定理,三角形外角性质,等腰三角形性质等知识,掌握正多边形的性质及多边形内角和定理是本题的关键.

    4、##

    【解析】

    【分析】

    连接OBOD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.

    【详解】

    解:连接OBOD

    ∵五边形ABCDE是正五边形,

    ∴∠E=∠A

    ABDE与⊙O相切,

    ∴∠OBA=∠ODE=90°,

    ∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,

    ∴劣弧BD的长为

    故答案为:

    【点睛】

    本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.

    5、122.5°

    【解析】

    【分析】

    如图所示,作△ABC外接圆,利用圆周角定理得到∠A=65°,由于I是△ABC的内心,则∠BIC=180°-ABC-ACB,然后把∠BAC的度数代入计算即可.

    【详解】

    解:如图所示,作△ABC外接圆,

    ∵点O是△ABC的外心,∠BOC=130°,

    ∴∠A=65°,

    ∴∠ABC+∠ACB=115°,

    ∵点I是△ABC的内心,

    ∴∠IBC+∠ICB=×115°=57.5°,

    ∴∠BIC=180°﹣57.5°=122.5°.

    故答案为:122.5°.

    【点睛】

    此题主要考查了三角形内心和外心的综合应用,根据题意得出∠IBC+∠ICB的度数是解题关键.

    三、解答题

    1、 (1)证明见解析

    (2)⊙O半径的长为

    【解析】

    【分析】

    (1)根据角度的数量关系,可得,即,进而可证的切线;

    (2)由题意知,由可得的值,由,得,在中,,求解即可.

    (1)

    证明:∵的直径

    的切线;

    (2)

    解:∵

    中,,即

    半径长为

    【点睛】

    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.

    2、 (1)见解析

    (2)

    (3)①见解析;②

    【解析】

    【分析】

    (1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即

    (2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;

    (3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点DCME在同一个圆()上;②当AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当AB相切时”是临界情况.如图4,当AB相切(切点为G),连接OG,并延长GOCD于点H,在RtCHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.

    (1)

    四边形是正方形,

    的运动速度都是2cm/s,

    (2)

    ∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;

    如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长

    故答案为:

    (3)

    ①如图3.由前面结论可知:

    ∴△CME的外接圆的圆心O是斜边CE的中点,

    RtCDE中,OCE的中点.

    ∴点DCME在同一个圆()上,

    即点D在△CME的外接圆上;.

    如图4,当AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当AB相切时”是临界情况.

    如图4,当AB相切(切点为G),连接OG,并延长GOCD于点H

    AB相切,

    又∵

    的半径为R.由题意得:

    RtCHO中,,解得

    ,即

    ∴如图5,当时,与正方形的各边共有6个交点.

    【点睛】

    本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.

    3、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)根据切线的判定方法,证出即可;

    (2)由勾股定理得,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.

    (1)

    解:如图,连接OB

    AB的切线,

    ,即

    BC是弦,

    ,在中,

    ,即

    AC的切线;

    (2)

    解:在中,

    由勾股定理得,

    中,

    【点睛】

    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.

    4、 (1)见解析

    (2)cm

    【解析】

    【分析】

    (1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;

    (2)记⊙OAB的切点为E,连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可.

    ①设AC=3xAB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;

    ②设AC=3xAB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;

    (1)

    解:如图,

    (2)

    解:如图,设相切于点.连接OE,则OC=OEBC=BE,设OC=OE=r,则AO=AC-r

    ①∵,∴设AC=3xAB=5x

    BC==4x

    的周长为12cm

    ∴3x+4x+5x=12,

    x=1,

    AC=3,AB=5,

    ∵⊙O 与 ABBC 所在直线相切

    BE=BC=4,

    AE=AB-BE=5-4=1,AO=3-r

    RtAOE中,

    AO2=AE2+OE2

    ∴(3-r)2=12+r2

    r=

    ②∵,∴设AC=3xAB=5x

    BC==4x

    ∴4x=12,

    x=1,

    AC=3,AB=5,

    ∵⊙OABBC 所在直线相切

    ∴BE=BC=4,

    AE=AB-BE=5-4=1,AO=3-r

    RtAOE中,

    AO2=AE2+OE2

    ∴(3-r)2=12+r2

    r=

    即⊙O的半径cm

    【点睛】

    本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.

    5、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;

    (2)证明,利用相似三角形的性质可求的半径.

    (1)

    证明:连接

    是直径,的中点.

    平分

    又∵

    又∵经过半径的外端,

    的切线.

    (2)

    解:∵

    中,

    中,

    .

    设半径为,则

    的半径为

    【点睛】

    本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.

     

    相关试卷

    初中冀教版第29章 直线与圆的位置关系综合与测试精品课时训练: 这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品课时训练,共34页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题,共34页。试卷主要包含了如图,将的圆周分成五等分,若O是ABC的内心,当时,等内容,欢迎下载使用。

    2021学年第29章 直线与圆的位置关系综合与测试精品习题: 这是一份2021学年第29章 直线与圆的位置关系综合与测试精品习题,共30页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map