|试卷下载
终身会员
搜索
    上传资料 赚现金
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(精选含详解)
    立即下载
    加入资料篮
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(精选含详解)01
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(精选含详解)02
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(精选含详解)03
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第29章 直线与圆的位置关系综合与测试精品习题

    展开
    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品习题,共30页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 ; B.点A在⊙O上;
    C.点A在⊙O外; D.不能确定.
    2、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    3、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    4、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5
    5、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    6、下列说法正确的是( )
    A.三点确定一个圆 B.任何三角形有且只有一个内切圆
    C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
    7、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    8、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    9、如图,在平面直角坐标系中,,,.则△ABC的外心坐标为( )

    A. B. C. D.
    10、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )

    A.20° B.30° C.50° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.
    2、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是______.
    3、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.

    4、如图,正五边形ABCDE内接于⊙O,作OF⊥BC交⊙O于点F,连接FA,则∠OFA=_____°.

    5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;
    (2)若AE=4,ED=2,求ΘO的半径.
    2、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
    【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.

    (1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
    (2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
    (3)如图2,连接CE,在点E、F的运动过程中.
    ①试说明点D在△CME的外接圆O上;
    ②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
    3、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.
    4、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.
    5、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
    【详解】
    解:∵⊙O的半径为3cm,OA=6cm,
    ∴d>r,
    ∴点A与⊙O的位置关系是:点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    2、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    3、B
    【解析】
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    4、C
    【解析】
    【分析】
    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.
    【详解】
    解:∵PA,PB为⊙O的切线,
    ∴PA=PB,
    ∵∠APB=60°,
    ∴△APB为等边三角形,
    ∴AB=PA=5.
    故选:C.
    【点睛】
    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
    5、A
    【解析】
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    6、B
    【解析】
    【分析】
    根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
    【详解】
    解:A、不在同一直线上的三点确定一个圆,故错误;
    B、任何三角形有且只有一个内切圆,正确;
    C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
    D、边数是偶数的正多边形一定是中心对称图形,故错误;
    故选:B.
    【点睛】
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    7、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    8、B
    【解析】
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    9、D
    【解析】
    【分析】
    由BC两点的坐标可以得到直线BC∥y轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为P(a,-1),利用两点距离公式和外心的性质得到,由此求解即可.
    【详解】
    解:∵B点坐标为(2,-1),C点坐标为(2, 3),
    ∴直线BC∥y轴,
    ∴直线BC的垂直平分线为直线y=1,
    ∵外心是三角形三条边的垂直平分线的交点,
    ∴△ABC外心的纵坐标为1,
    设△ABC的外心为P(a,1),
    ∴,
    ∴,
    解得,
    ∴△ABC外心的坐标为(-2, 1),
    故选D.
    【点睛】
    本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.
    10、C
    【解析】
    【分析】
    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
    【详解】
    解:连接OC,

    ∵DC切⊙O于点C,
    ∴∠OCD=90°,
    ∵∠A=20°,
    ∴∠OCA=20°,
    ∴∠DOC=40°,
    ∴∠D=90°-40°=50°.
    故选:C.
    【点睛】
    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
    二、填空题
    1、相切或相交
    【解析】
    【详解】
    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
    【分析】
    解:∵x2﹣5x+6=0,
    (x﹣2)(x﹣3)=0,
    解得:x1=2,x2=3,
    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
    ∴当半径为2时,直线l与圆O的的位置关系是相切,
    当半径为3时,直线l与圆O的的位置关系是相交,
    综上所述,直线l与圆O的的位置关系是相切或相交.
    故答案为:相切或相交.
    【点睛】
    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
    2、相切
    【解析】
    【分析】
    本题应将原点到直线x=3的距离与半径对比即可判断.
    【详解】
    解:∵原点到直线x=3的距离为3,半径为3,
    则有3=3,
    ∴这个圆与直线x=3相切.
    故答案为:相切.
    【点睛】
    本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.
    3、
    4、36
    【解析】
    【分析】
    连接OA,OB,OB交AF于J.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.
    【详解】
    解:连接OA,OB,OB交AF于J.
    ∵五边形ABCDE是正五边形,OF⊥BC,
    ∴,
    ∴∠AOB=72°,∠BOF=∠AOB=36°,
    ∴∠AOF=∠AOB +∠BOF=108°,
    ∵OA=OF,
    ∴∠OAF=∠OFA==36°

    故答案为:36.
    【点睛】
    本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于.
    5、或
    【解析】
    【分析】
    如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
    【详解】
    解:如图,连接 (即)分别在优弧与劣弧上,

    PM,PN分别与⊙O相切于A,B两点,




    故答案为:或
    【点睛】
    本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
    三、解答题
    1、 (1)相切,理由见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
    (2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
    (1)
    解:所在直线与相切.
    理由:连接.

    ∵,
    ∴.
    ∵平分,
    ∴.
    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∵是半径,
    ∴所在直线与相切.
    (2)
    解:连接.
    ∵是的直径,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    ∵,,,
    ∴.
    ∴.
    ∴的半径为.
    【点睛】
    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
    2、 (1)见解析
    (2)
    (3)①见解析;②
    【解析】
    【分析】
    (1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
    (2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
    (3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
    (1)
    四边形是正方形,

    又的运动速度都是2cm/s,








    (2)
    ∵.
    ∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
    如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
    故答案为:
    (3)
    ①如图3.由前面结论可知:
    ∴△CME的外接圆的圆心O是斜边CE的中点,

    在Rt△CDE中,,O是CE的中点.
    ∴,

    ∴点D、C、M、E在同一个圆()上,
    即点D在△CME的外接圆上;.
    ②.
    如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
    如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
    ∵AB与相切,
    ∴,
    又∵,
    ∴,

    设的半径为R.由题意得:
    在Rt△CHO中,,解得

    ∴,即
    ∴如图5,当时,与正方形的各边共有6个交点.

    【点睛】
    本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
    3、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
    4、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
    5、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共30页。

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品随堂练习题: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品随堂练习题,共35页。试卷主要包含了如图,将的圆周分成五等分,在中,,,给出条件,将一把直尺,在平面直角坐标系中,以点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map