初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品综合训练题,共34页。试卷主要包含了如图,将的圆周分成五等分,若O是ABC的内心,当时,等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,是的切线,,是切点,,是上的点,若,,则的度数为( )
A. B. C. D.
2、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )
A.点O在⊙A内 B.点O在⊙A外
C.点O在⊙A上 D.以上都有可能
3、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
A.点A在⊙O内 ; B.点A在⊙O上;
C.点A在⊙O外; D.不能确定.
4、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )
A.40° B.50° C.55° D.60°
5、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )
A. B.
C. D.
6、若O是ABC的内心,当时,( )
A.130° B.160° C.100° D.110°
7、如图,在中,以AB为直径的圆交AC于点D,的切线DE交BC于点E,若,于点E且,则的半径为( ).
A.4 B. C.2 D.
8、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
9、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m( )
A.m=4 B.m=4 C.4≤m≤4 D.4≤m≤4
10、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是( )
A.18° B.28° C.36° D.45°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在中,,,,如果以点A为圆心,AC为半径作,那么斜边AB的中点D在______.(填“内”、“上”或者“外”)
2、在Rt△ABC中,∠ACB=90°,BC=3,AC=4,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是=____.
3、如图,在△ABC中,I是△ABC的内心,O是AB边上一点,⊙O经过点B且与AI相切于点I,若tan∠BAC=,则sin∠ACB的值为 _____.
4、已知正六边形的周长是24,则这个正六边形的半径为_____ .
5、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)若,△ACD的面积为12,求PB的长.
2、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.
(1)求证:是的切线;
(2)若,,求半径的长.
3、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8,AE=6,求⊙O的半径.
4、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
5、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
(1)求证:;
(2)求证:AF是⊙O的切线.
-参考答案-
一、单选题
1、A
【解析】
【分析】
如图,连接先求解 再利用圆周角定理可得,从而可得答案.
【详解】
解:如图,连接
,是的切线,
故选A
【点睛】
本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.
2、B
【解析】
【分析】
本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.
【详解】
解:∵点A(﹣4,﹣3),
∴,
∵⊙A的半径为4,
∴,
∴点O在⊙A外;
故选:B
【点睛】
本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.
3、C
【解析】
【分析】
要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
【详解】
解:∵⊙O的半径为3cm,OA=6cm,
∴d>r,
∴点A与⊙O的位置关系是:点A在⊙O外,
故选:C.
【点睛】
本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
4、C
【解析】
【分析】
连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
【详解】
解:连接OC,如图所示:
∵CE与相切,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
5、C
【解析】
【分析】
利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
【详解】
如图,连接AB,BC,CD,DE,EA,
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,
∴∠DAE=∠AEB,
∴AM=ME,
∴,
∴A正确,不符合题意;
∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
∴点F是线段BD的黄金分割点,
∴,
∵AB=BC=CD=DE=EA,∠BCD=∠AED,
∴△BCD≌△AED,
∴AD=BD,
∴,
∴B正确,不符合题意;
∵AB=BC=CD=DE=EA, ∠BAE=108°,
∴∠BAC=∠CAD=∠DAE,
∴∠CAD=36°,
∴D正确,不符合题意;
∵∠CAD=36°, AN=BN=AM=ME,
∴∠ANM=∠AMN=72°,
∴AM>MN,
∴C错误,符合题意;
故选C.
【点睛】
本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
6、A
【解析】
【分析】
由三角形内角和以及内心定义计算即可
【详解】
∵
∴
又∵O是ABC的内心
∴OB、OC为角平分线,
∴
∴180°=180°-50°=130°
故选:A.
【点睛】
本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
7、C
【解析】
【分析】
连接OD、BD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.
【详解】
解:连接OD、BD,
∵∠CAB=30°,OD=OA,
∴∠CAB=∠ODA=30°,
∴∠BOD=∠CAB+∠ODA=60°,
∵OD=OB,
∴△BOD是等边三角形,
∵DE是⊙O的切线,
∴∠ODE=90°,
∴∠BDE=30°,
∵DE⊥BC于点E且BE=1,
∴BD=2BE=2,
∴OB=BD=2,
即⊙O的半径为2,
故选:C.
.
【点睛】
本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.
8、B
【解析】
【分析】
如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
9、D
【解析】
【分析】
根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题
【详解】
解:如图,
根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,
根据折叠的性质可得,又则四边形是菱形,且
设,则
则当取得最大值时,取得最小值,即取得最小值,
当取得最小值时,取得最大值,
根据题意,当点于点重合时,四边形是正方形
则
此时
当点与点重合时,此时最小,
则
即
则
故选D
【点睛】
本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.
10、A
【解析】
【分析】
连接OA,DE,利用切线的性质和角之间的关系解答即可.
【详解】
解:连接OA,DE,如图,
∵AC是的切线,OA是的半径,
∴OAAC
∠OAC=90°
∠ADE=36°
AOE=2∠ADE=72°
∠C=90°-∠AOE=90°-72°=18°
故选:A.
【点睛】
本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.
二、填空题
1、上
【解析】
【分析】
先利用中点的含义求解 结合点与圆心的距离等于圆的半径,则点在圆上,从而可得答案.
【详解】
解:如图,,,,为的中点,
在上,
故答案为:上
【点睛】
本题考查的是点与圆的位置关系的判断,掌握“点与圆的位置关系的判断方法”是解本题的关键.
2、
【解析】
【分析】
先利用切线长定理求得OC=,再判断出当点D运动到线段QA上时,AD取得最小值,
然后利用勾股定理求解即可.
【详解】
解:⊙O 与Rt△ABC三边的切点分别为E、F、G,连接OE、OF、OG、OC,
∵⊙O是Rt△ABC内切圆,∠ACB=90°,BC=3,AC=4,
∴CE=CF,BE=BG,AF=AG,则四边形OECF是正方形,AB==5,
设正方形OECF的边长为x,则BE=BG=3-x,AF=AG=4-x,
依题意得:3-x+4-x=5,
解得:x=1,
∴OC=,
∵CD⊥l,即∠CDO=90°,
∴点D在以OC为直径的⊙Q上,
连接QA,过点Q作QP⊥AC于点P,
当点D运动到线段QA上时,AD取得最小值,
∴CP=QP=,AP=AC-CP=,⊙Q的半径为QD=,
∴QA=,
∴AD的最小值为AQ-QD=,
故答案为:.
【点睛】
本题考查了内心的性质,切线长定理,圆周角定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.
3、##0.8
【解析】
【分析】
连接OI,BI,作OE⊥AC,可证△AOD是等腰三角形,然后证明OD∥BC,进而∠ADO=∠ACB,解三角形AOD即可.
【详解】
解:如图,连接OI并延长交AC于D,连接BI,
∵AI与⊙O相切,
∴AI⊥OD,
∴∠AIO=∠AID=90°,
∵I是△ABC的内心,
∴∠OAI=∠DAI,∠ABI=∠CBI,
∵AI=AI,
∴△AOI≌△ADI(ASA),
∴AO=AD,
∵OB=OI,
∴∠OBI=∠OIB,
∴∠OIB=∠CBI,
∴OD∥BC,
∴∠ADO=∠C,
作OE⊥AC于E,
∵tan∠BAC==,
∴不妨设OE=24k,AE=7k,
∴OA=AD=25k,
∴DE=AD﹣AE=18k,
∴OD==30k,
∴sin∠ACB=== .
故答案是:
【点睛】
本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键.
4、4
【解析】
【分析】
由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.
【详解】
解:∵正六边形可以由其半径分为六个全等的正三角形,
而三角形的边长就是正六边形的半径,
又∵正六边形的周长为24,
∴正六边形边长为24÷6=4,
∴正六边形的半径等于4.
故答案为4.
【点睛】
此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.
5、5
【解析】
【分析】
根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
【详解】
如图,分别作AB、BC的中垂线,两直线的交点为O,
以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
由图可知,⊙O还经过点D、E、F、G、H这5个格点,
故答案为5.
【点睛】
此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
三、解答题
1、 (1)见解析
(2)见解析
(3)
【解析】
【分析】
(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
(1)
连接OC,如图,
∵AB是的直径,
,
即.
,,
,
.
,
.
.
又是半径,
是⊙O的切线.
(2)
由(1),得.
,
.
,
.
平分,
.
又,
,即.
,
.
(3)
作于点F,如图,
.
平分,,
.
,由勾股定理得:.
,,
,
.
,
.
设,
,
.
解得或(舍去).
.
Rt△ACF中,由勾股定理得:,
,.
由(2)得,
.
,,
,
,
【点睛】
本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
2、 (1)证明见解析
(2)⊙O半径的长为
【解析】
【分析】
(1)根据角度的数量关系,可得,即,进而可证是的切线;
(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
(1)
证明:∵是的直径
∴
∴
∵
∴
∴,
∴
∴是的切线;
(2)
解:∵,
∴
∵
∴
∵,
∴
∴,
∵
∴
∴,
在中,,即
∴
∴半径长为.
【点睛】
本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
4、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
5、 (1)见解析;
(2)见解析
【解析】
【分析】
(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
(1)
解:∵,
∴,
又∵,
∴,
∴ ;
(2)
解:如图,连接OA,
∵,
∴,
∴,
∵,
∴,
∴,
∵已知,
∴,
∴,
∴,
∴,
∴AF为⊙O的切线.
【点睛】
本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题,共31页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练,共31页。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步训练题,共31页。试卷主要包含了下面四个结论正确的是等内容,欢迎下载使用。