数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练
展开
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共28页。试卷主要包含了如图,A,已知M等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )A. B. C. D.2、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )A.1 B. C. D.3、下列说法正确的是( )A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形4、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断5、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )A.50° B.55° C.65° D.75°6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )A. B. C. D.7、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )A.点A在⊙O内 ; B.点A在⊙O上;C.点A在⊙O外; D.不能确定.8、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )A.10 B.11 C.12 D.139、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)10、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.2、⊙O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是____________.3、一个正多边形的中心角是,则这个正多边形的边数为________.4、点P为⊙O外一点,直线PO与⊙O的两个公共点为A,B,过点P作⊙O的切线,切点为C,连接AC,若∠CPO=40°,则∠CAB=_____度.5、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.三、解答题(5小题,每小题10分,共计50分)1、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.(1)求证:AD是⊙O的切线;(2)若AE=,CE=2,求⊙O的半径和线段BC的长.2、如图,是的切线,点在上,与相交于,是的直径,连接,若.(1)求证:平分;(2)当,时,求的半径长.3、如图,已知是的直径,点在上,点在外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:是的切线.4、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.(1)求证:AD是O的切线.(2)若O的半径为4,,求平行四边形OAEC的面积.5、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180° (1)试说明:直线为⊙P的切线.(2)若∠B=30°,AD=2,求CD的长. -参考答案-一、单选题1、D【解析】【分析】设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.【详解】解:设半径为r,如解图,过点O作,∵OB=OE,∴,∵四边形ABCD为矩形,∴∠C=90°=∠OFB,∠OBF=∠DBC,∴.∴,∵,∴,∴,∴,∴.在中,,即,又∵为的切线,∴,∴,解得或0(不合题意舍去).故选D.【点睛】本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.2、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.【详解】如图,过点O作OG⊥AF,垂足为G,∵正六边形的边心距为,∴∠AOG=30°,OG=,∴OA=2AG,∴,解得GA=1,∴OA=2,设圆锥的半径为r,根据题意,得2πr=,解得r=,故选C.【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.3、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、A【解析】【分析】直接根据点与圆的位置关系进行解答即可.【详解】解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,∴点P在圆内.故选:A.【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.5、C【解析】【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∴∠A=∠BOC=25°,∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.6、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵是的切线,B为切点∴∠OBA=90°∵∴∠COB=90°-42°=48°∴=∠COB=24°.故选B.【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.7、C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为3cm,OA=6cm,∴d>r,∴点A与⊙O的位置关系是:点A在⊙O外,故选:C.【点睛】本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.8、A【解析】【分析】作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.9、C【解析】【分析】先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.【详解】解:设直线的解析式为,将点代入得:,解得,则直线的解析式为,A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;故选:C.【点睛】本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.10、B【解析】【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.二、填空题1、4【解析】【分析】连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.【详解】如图,连接OB,∵PB与⊙O相切于点B,∴∠PBO=90°,∵∠P=30°,OB=2,∴PO=4,故答案为:4.【点睛】本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.2、相离【解析】【分析】根据直线和圆的位置关系的判定方法判断即可.【详解】解:∵⊙O的半径为3cm,圆心O到直线l的距离为d=5cm,∴d>r,∴直线l与⊙O的位置关系是相离,故答案为:相离.【点睛】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.3、九##9【解析】【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.【详解】解:设这个正多边形的边数为n,∵这个正多边形的中心角是40°,∴,∴,∴这个正多边形是九边形,故答案为:九.【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.4、25或65【解析】【分析】由切线性质得出∠OCP=90°,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得∠CAB或∠CBA的度数即可解答.【详解】解:如图1,连接OC,∵PC是⊙O的切线,∴OC⊥PC,即∠OCP=90°,∵∠CPO=40°,∴∠POC=90°-40°=50°,∵OA=OC,∴∠CAB=∠OCA,∴∠POC=2∠CAB,∴∠CAB=25°,如图2,∠CBA=25°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠CBA=65°,综上,∠CAB=25°或65°.【点睛】本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键.5、【解析】【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE是直径,∠ECD=45°,根据题意得:AB=2.5, ,∴ ,∴ ,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.三、解答题1、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA.∵, ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°, ∴OA⊥AD, ∵OA是半径,∴AD是⊙O的切线. (2)解:设⊙O的半径为R,则OA=R,OE=R-2.在Rt△OAE中,,∴,解得或(不合题意,舍去),延长CO交⊙O于F,连接AF,∵∠AEF=∠CEB,∠B=∠AFE,∴△CEB∽△AEF,∴, ∵CF是直径,∴CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,∴AF=,∴, ∴BC=. .【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.2、 (1)见解析(2)的半径长为.【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接,∵是的切线,∴,∵,∴,∴,∵,∴,∴,即平分;(2)解:如图,连接,在中,,,由勾股定理得:,∵是的直径,∴,∴,∵,∴,∴,即,解得:,∴的半径长为.【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.3、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.(2)解:连接AD,如图∵为直径∴∵∴∴又∵AB为直径∴AE是的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.4、 (1)见解析(2)32【解析】【分析】(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;(2)根据平行四边形OAEC的面积等于2倍即可求解.(1)证明:连接OD.∵四边形OAEC是平行四边形,∴,又∵,∴,∵AB与相切于点B,∴,又∵OD是的半径,∴AD为的切线.(2)∵在Rt△AOD中,∴平行四边形OABC的面积是【点睛】本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.5、 (1)见解析(2)【解析】【分析】(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.(1)连接PC,∵PC=PB,∴∠B=∠PCB,∴∠APC=2∠B,∵2∠B+∠DAB=180°,∴∠DAP+∠APC=180°,∴PC∥DA,∵∠ADC=90°,∴∠DCP=90°,即DC⊥CP,∴直线CD为⊙P的切线;(2)连接AC,∵∠B=30°,∴∠CPA=2∠B=60°,∵AP=CP,∠CPA=60°,∴△APC为等边三角形,∵∠DCP=90°,∴∠DCA=90°-∠ACP=90°-60°=30°,∵AD=2,∠ADC=90°,∴AC=2AD=4,∴CD=.【点睛】本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业,共36页。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共38页。试卷主要包含了已知M,下面四个结论正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题,共36页。