![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(精选)01](http://img-preview.51jiaoxi.com/2/3/12734794/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(精选)02](http://img-preview.51jiaoxi.com/2/3/12734794/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评试题(精选)03](http://img-preview.51jiaoxi.com/2/3/12734794/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步达标检测题
展开九年级数学下册第二十九章直线与圆的位置关系专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于( )
A.40° B.50° C.55° D.60°
2、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
A. B. C. D.
3、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )
A.70° B.50° C.20° D.40°
4、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
5、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
6、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )
A.14cm B.8cm C.7cm D.9cm
7、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
8、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
A.① B.② C.③ D.①或③
9、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
10、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形 B.这个三角形是等边三角形
C.这个三角形是直角三角形 D.这个三角形是等腰三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的半径为5,点A到点O的距离为7,则点A在圆______.(填“内”或“上”或“外”)
2、如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.
3、如图,半圆O的直径DE=12cm,在中,,,.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为(s),运动开始时,半圆O在的左侧,.当______时,的一边所在直线与半圆O所在的圆相切.
4、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.
5、在中,,,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
2、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.
(1)求证:AD是⊙O的切线;
(2)若AE=,CE=2,求⊙O的半径和线段BC的长.
3、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.
(1)求证:直线DE是⊙O的切线;
(2)若DE=7,CE=5,求⊙O的半径.
4、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.
(1)求证:AD是O的切线.
(2)若O的半径为4,,求平行四边形OAEC的面积.
5、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.
【详解】
解:连接OC,如图所示:
∵CE与相切,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
2、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
3、D
【解析】
【分析】
首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
【详解】
解:连接OA,OB,
∵PA,PB为⊙O的切线,
∴∠OAP=∠OBP=90°,
∵∠ACB=70°,
∴∠AOB=2∠P=140°,
∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
故选:D.
【点睛】
此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
4、D
【解析】
【分析】
如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
【详解】
解:如图所示,连接DP,CP,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∵AP=3,AB=8,
∴BP=AB-AP=5,
∵,
∴PB=PD,
∴,
∴点C在圆P外,点B在圆P上,
故选D.
【点睛】
本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
5、B
【解析】
【分析】
由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d
【详解】
解:∵点(2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选B.
【点睛】
本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
6、B
【解析】
【分析】
根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.
【详解】
解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,
∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,
∵△ABC周长为20cm,BC=6cm,
∴AE=AD====4(cm),
∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),
故选:B.
【点睛】
本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.
7、C
【解析】
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
8、B
【解析】
【分析】
作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.
【详解】
解:作AD⊥BC于D,
∵∠B=45°,AB=6;
∴,
设三角形ABC1的外接圆为O,连接OA、OC1,
∵∠B=45°,
∴∠O=90°,
∵外接圆半径为4,
∴;
∵
∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;
当AC=8时,圆A与射线BD只有一个交点;当AC= 时,圆A与射线BD有两个交点;
故选:B.
【点睛】
本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.
9、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
10、C
【解析】
【分析】
分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.
【详解】
如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,
∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,
∵,
∴这个三角形是直角三角形,
故选C.
【点睛】
本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.
二、填空题
1、外
【解析】
【分析】
直接根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径是5,点A到圆心O的距离是7,
即点A到圆心O的距离大于圆的半径,
∴点A在⊙O外.
故答案为:外.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
2、##
【解析】
【分析】
连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF
【详解】
解:连接OC,
∵AB是圆的直径,
∴
∴
∵
∴
∵
∴
∴
∴,即OC⊥CD
∵的半径为
∴
在Rt△OCD中,
∴
∴
过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,
∵
∴,解得,
同理:
∴
∴
故答案为:
【点睛】
本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.
3、1或4或7
【解析】
【分析】
的一边所在直线与半圆O所在的圆相切有三种情况:当点C与点E重合、点O与点C重合以及点D与点C重合,分别找出点O运动的路程,即可求出答案.
【详解】
如图,当点C与点E重合时,AC与半圆O所在的圆相切,
∵,
∴,
∴,即点O运动了2cm,
∴,
当AB与半圆O所在的圆相切时,
过点C作交于点F,
∵,,
∴,
∴,即点O与点C重合,
∴点O运动了8cm,
∴,
当点C与点D重合时,AC与半圆O所在的圆相切,
,即点O运动了14cm,
∴,
故答案为:1或4或7.
【点睛】
考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.
4、15##十五
【解析】
【分析】
根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
【详解】
解:如图,设正多边形的外接圆为⊙O,连接OA,OB,
∵∠ADB=12°,
∴∠AOB=2∠ADB=24°,
而360°÷24°=15,
∴这个正多边形为正十五边形,
故答案为:15.
【点睛】
本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
5、##
【解析】
【分析】
首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.
【详解】
解:如图,作PG⊥AB,交AB所在直线于点G,
∵D1,E1在以A为圆心,AD为半径的圆上,
当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
此时四边形AD1PE1是正方形,
∵∠CAB=90°,AC=AB=4,D,E分别是AB,AC的中点,
∴AD=AE1=AD1=PD1=2,
则BD1=,
故∠ABP=30°,
则PB=2+2,
∴PG=PB=,
故点P到AB所在直线的距离的最大值为:PG=.
故答案为:.
【点睛】
本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.
三、解答题
1、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
2、 (1)见解析
(2)4,
【解析】
【分析】
(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
(1)
证明:连接OA.
∵,
∴∠AOC+∠OAD=180°,
∵∠AOC=2∠ABC=2×45°=90°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线.
(2)
解:设⊙O的半径为R,则OA=R,OE=R-2.
在Rt△OAE中,,
∴,
解得或(不合题意,舍去),
延长CO交⊙O于F,连接AF,
∵∠AEF=∠CEB,∠B=∠AFE,
∴△CEB∽△AEF,
∴,
∵CF是直径,
∴CF=8,∠CAF=90°,
又∵∠F=∠ABC=45°,
∴∠F=∠ACF=45°,
∴AF=,
∴,
∴BC=.
.
【点睛】
此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
3、 (1)见解析
(2)4
【解析】
【分析】
(1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
(2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
(1)
证明:连接OD,
∵∠ACB=90°,AC=BC,
∴∠ABC=45°,
∴∠COD=2∠ABC=90°,
∵四边形GDEC是平行四边形,
∴DE∥CG,
∴∠ODE+∠COD=180°,
∴∠ODE=90°,即OD⊥DE,
∵OD是半径,
∴直线DE是⊙O的切线;
(2)
解:设⊙O的半径为r,
∵四边形GDEC是平行四边形,
∴CG=DE=7,DG=CE=5,
∵∠GOD=90°,
∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
解得:r1=3,r2=4,
当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
∴r=4,即⊙O的半径4.
【点睛】
本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
4、 (1)见解析
(2)32
【解析】
【分析】
(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
(2)根据平行四边形OAEC的面积等于2倍即可求解.
(1)
证明:连接OD.
∵四边形OAEC是平行四边形,
∴,
又∵,
∴,
∵AB与相切于点B,
∴,
又∵OD是的半径,
∴AD为的切线.
(2)
∵
在Rt△AOD中,
∴平行四边形OABC的面积是
【点睛】
本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
5、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时训练: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时训练,共31页。