![难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12734798/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12734798/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12734798/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题
展开
这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题,共32页。
九年级数学下册第二十九章直线与圆的位置关系专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
2、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π
3、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为( )
A. B.2 C.2 D.3
4、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是( )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
5、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是( )
A.30° B.36° C.45° D.72°
6、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断
7、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
8、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
A. B. C. D.
9、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是( )
A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
10、若O是ABC的内心,当时,( )
A.130° B.160° C.100° D.110°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.
2、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
3、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.
4、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_______.
5、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).
三、解答题(5小题,每小题10分,共计50分)
1、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
2、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
3、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
4、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.
(1)如图(1),连接.
①求的正切值;
②求点的坐标.
(2)如图(2),若点是的中点,作于点,连接,,,求证:.
5、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、B
【解析】
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
3、C
【解析】
【分析】
根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
【详解】
解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
则:、、,,
∵∠F=60°,
∴为等边三角形,,
∵△FDE的周长为12,即,
∴,即,
作,如下图:
则,,
∴,
设,则,由勾股定理可得:,
解得,,
故选C
【点睛】
此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
4、A
【解析】
【分析】
根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
5、B
【解析】
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
【详解】
解:如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B
【点睛】
本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
6、A
【解析】
【分析】
已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.
【详解】
∵⊙O的半径为3,若PO=2,
∴2<3,
∴点P与⊙O的位置关系是点P在⊙O内,
故选:A.
【点睛】
本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
7、B
【解析】
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
8、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
9、A
【解析】
【分析】
先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
【详解】
解:由两点距离公式可得点(8,6)到原点的距离为,
又的半径为10,
∴点(8,6)到圆心的距离等于半径,
点(8,6)在上,
故选A.
【点睛】
本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
10、A
【解析】
【分析】
由三角形内角和以及内心定义计算即可
【详解】
∵
∴
又∵O是ABC的内心
∴OB、OC为角平分线,
∴
∴180°=180°-50°=130°
故选:A.
【点睛】
本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
二、填空题
1、相切或相交
【解析】
【分析】
本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.
【详解】
设直线AB上与圆心距离为4cm的点为C,
当OC⊥AB时,OC=⊙O的半径,
所以直线AB与⊙O相切,
当OC与AB不垂直时,圆心O到直线AB的距离小于OC,
所以圆心O到直线AB的距离小于⊙O的半径,
所以直线AB与⊙O相交,
综上所述直线AB与⊙O的位置关系为相切或相交,
故答案为:相切或相交.
【点睛】
本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.
2、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
3、5
【解析】
【分析】
根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
【详解】
如图,分别作AB、BC的中垂线,两直线的交点为O,
以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
由图可知,⊙O还经过点D、E、F、G、H这5个格点,
故答案为5.
【点睛】
此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
4、90°
【解析】
【分析】
先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.
【详解】
解:∵是的内接正六边形一边
∴
∴
∵
∴
∴
故答案为90°
【点睛】
本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键
5、①②③
【解析】
【分析】
根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
【详解】
解:如图, 是的两条切线,
故①正确,
故②正确,
是的两条切线,
取的中点,连接,则
∴以为圆心,为半径作圆,则共圆,故③正确,
M是外接圆的圆心,
与题干提供的条件不符,故④错误,
综上:正确的说法是①②③.
故填①②③.
【点睛】
本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
三、解答题
1、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
2、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
3、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
4、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
5、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后复习题,共35页。试卷主要包含了已知M等内容,欢迎下载使用。