年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题第1页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题第2页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第29章 直线与圆的位置关系综合与测试精品课后复习题

    展开

    这是一份初中第29章 直线与圆的位置关系综合与测试精品课后复习题,共30页。
    九年级数学下册第二十九章直线与圆的位置关系综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法正确的是( )
    A.三点确定一个圆 B.任何三角形有且只有一个内切圆
    C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
    2、下列四个命题中,真命题是( )
    A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
    C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
    3、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
    A.0 B.1 C.2 D.无法确定
    4、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )

    A.19° B.38° C.52° D.76°
    5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    6、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    7、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )

    A.20° B.30° C.50° D.40°
    8、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    9、如图,BD是⊙O的切线,∠BCE=30°,则∠D=(  )

    A.40° B.50° C.60° D.30°
    10、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )

    A.4 B.3 C.2 D.1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在中,,,,如果以点A为圆心,AC为半径作,那么斜边AB的中点D在______.(填“内”、“上”或者“外”)
    2、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)

    3、如图,在中,,以点为圆心,2为半径的与相切于点,交于点,交于点,点是上一点,且,则图中阴影部分的面积是______.

    4、已知线段PQ=2cm,以P为圆心,1.5cm为半径画圆,则点Q与⊙P的位置关系是点Q在______.(填“圆内”、“圆外”或“圆上”)
    5、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).
    2、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.
    3、如图,在RtABC中,∠ACB=Rt∠,以AC为直径的半圆⊙O交AB于点D,E为BC的中点,连结DE、CD.过点D作DF⊥AC于点F.

    (1)求证:DE是⊙O的切线;
    (2)若AD=5,DF=3,求⊙O的半径.
    4、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.
    5、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
    【详解】
    解:A、不在同一直线上的三点确定一个圆,故错误;
    B、任何三角形有且只有一个内切圆,正确;
    C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
    D、边数是偶数的正多边形一定是中心对称图形,故错误;
    故选:B.
    【点睛】
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    2、B
    【解析】
    【分析】
    利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
    【详解】
    解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
    B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
    C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
    D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
    故选:B
    【点睛】
    本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
    3、A
    【解析】
    【分析】
    圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.
    【详解】
    解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
    ∴,
    ∴直线l与相离,
    ∴直线l与⊙O的公共点的个数为0,
    故选A.
    【点睛】
    本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.
    4、B
    【解析】
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,




    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    5、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    6、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    7、C
    【解析】
    【分析】
    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
    【详解】
    解:连接OC,

    ∵DC切⊙O于点C,
    ∴∠OCD=90°,
    ∵∠A=20°,
    ∴∠OCA=20°,
    ∴∠DOC=40°,
    ∴∠D=90°-40°=50°.
    故选:C.
    【点睛】
    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
    8、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    9、D
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
    【详解】
    解:连接






    BD是⊙O的切线


    故选D
    【点睛】
    本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
    10、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.

    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    二、填空题
    1、上
    【解析】
    【分析】
    先利用中点的含义求解 结合点与圆心的距离等于圆的半径,则点在圆上,从而可得答案.
    【详解】
    解:如图,,,,为的中点,


    在上,
    故答案为:上
    【点睛】
    本题考查的是点与圆的位置关系的判断,掌握“点与圆的位置关系的判断方法”是解本题的关键.
    2、∠ABT=∠ATB=45°(答案不唯一)
    【解析】
    【分析】
    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
    【详解】
    解:添加条件:∠ABT=∠ATB=45°,
    ∵∠ABT=∠ATB=45°,
    ∴∠BAT=90°,
    又∵AB是圆O的直径,
    ∴AT是圆O的切线,
    故答案为:∠ABT=∠ATB=45°(答案不唯一).

    【点睛】
    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
    3、
    【解析】
    【分析】
    连接AD,由圆周角定理可求出,即可利用扇形面积公式求出.由切线的性质可知,即可利用三角形面积公式求出.最后根据,即可求出结果.
    【详解】
    如图,连接AD.

    ∵,
    ∴,
    ∴.
    ∵BC是⊙O切线,且切点为D,
    ∴,,
    ∴.
    ∵,
    ∴.
    故答案为:.
    【点睛】
    本题考查圆周角定理,切线的性质,扇形的面积公式.连接常用的辅助线是解答本题的关键.
    4、圆外
    【解析】
    【分析】
    根据点的圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为1.5cm,PQ=2cm,
    ∴2>1.5,
    ∴点Q在圆外.
    故答案为:圆外.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    5、
    【解析】
    【分析】
    由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
    【详解】
    解:∵正六边形ABCDEF的边长为2,
    =120°,
    ∵∠ABC+∠BAC+∠BCA=180°,
    ∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
    过B作BH⊥AC于H,

    ∴AH=CH,BH=AB=×2=1,
    在Rt△ABH中,
    AH= =,
    ∴AC=2 ,
    同理可证,∠EAF=30°,
    ∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,

    ∴图中阴影部分的面积为2π,
    故答案为:.
    【点睛】
    本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
    三、解答题
    1、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
    2、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.
    (2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.
    (1)
    证明:连接OD,
    ∵AC是直径,
    ∴∠ADC=90°,
    ∴∠BDC=180°﹣∠ADC=90°,
    ∵E是BC的中点,
    ∴,
    ∴∠EDC=∠ECD,
    ∵OC=OD,
    ∴∠ODC=∠OCD,
    ∴∠EDC+∠ODC=∠ECD +∠OCD,
    即∠ACB=∠ODE,
    ∵∠ACB=90°,
    ∴∠ODE=90°,
    又∵OD是半径,
    ∴DE是⊙O的切线.

    (2)
    解:设OD=x,
    ∵DF⊥AC,AD=5,DF=3,
    ∴,
    在三角形ADF中,

    解得,,
    ⊙O的半径为.
    【点睛】
    本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.
    4、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共39页。试卷主要包含了以半径为1的圆的内接正三角形,如图,FA等内容,欢迎下载使用。

    九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评:

    这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共37页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map