![2022年最新精品解析冀教版八年级数学下册第二十二章四边形综合练习练习题(精选含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734832/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十二章四边形综合练习练习题(精选含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734832/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版八年级数学下册第二十二章四边形综合练习练习题(精选含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734832/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共27页。
八年级数学下册第二十二章四边形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD2、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )A.3 B.4 C.5 D.63、下列命题错误的是( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).A.112° B.108° C.104° D.98°5、如图,在平面直角坐标系中,直线分别交x轴,y轴于A、B两点,C为线段OB上一点,过点C作轴交l于点D,若的顶点E恰好落在直线上,则点C的坐标为( )A. B. C. D.6、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )A.8 B.10 C.12 D.147、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )A.157° B.147° C.137° D.127°8、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )A. B. C. D.9、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④10、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.2、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.4、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.5、如图,在平行四边形ABCD中,(1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.(2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;(3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.(2)在(1)的条件下,求证:AE=CF.2、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.3、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.4、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若,,,求DF的长.5、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为 ;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是 ;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;用两种不同的方法数锐角个数,可以得到等式 .(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线. -参考答案-一、单选题1、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确; ∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.2、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE=AE,∴△ABE≌△ADE,∴=5,同理△CBE≌△CDE,∴,∵,∴CDE的面积为: =3,故选A.【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.3、C【解析】【分析】根据平行四边形的判定逐项分析即可得.【详解】解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;D、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,故选:C.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.4、C【解析】【分析】根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.【详解】解:∵四边形ABCD为平行四边形,∴,∵,∴,∴为直角三角形,∵M为AF的中点,∴,∴,,∵,∴,∴,∴,故选:C.【点睛】题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.5、D【解析】【分析】设点 ,根据轴,可得点 ,再根据平行四边形的性质可得点轴, ,则, ,即可求解.【详解】解:设点 ,∵轴,∴点 ,∵四边形是平行四边形,∴轴, ,∴点 ,∴ ,∵直线分别交y轴于B两点,∴当 时, ,∴点 ,∴ ,∴,解得: ,∴ ,∴点 .故选:D【点睛】本题主要考查了一次函数的图形和性质,平行四边形的性质,熟练掌握一次函数的图形和性质,平行四边形的性质,利用数形结合思想解答是解题的关键.6、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.【详解】解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,∴∠BDE=∠CBD,∴∠BDE=∠DBE,∴BE=DE,∵的面积是22.5,,∴ ,解得: ,∴,在 中,由勾股定理得: ,∴ .故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.7、C【解析】【分析】根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.【详解】解:∵四边形ABCD是平行四边形,∴AC=2AO,∵,∴AO=AB,∵,∴,∴=,故选:C.【点睛】此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.8、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵, ∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD=,即2x•2x=,∴x2=,∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2=,故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.9、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.10、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.二、填空题1、【解析】【分析】在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.【详解】解:在上取一点,使得,连接,,作直线交于,过点作于.,,是等边三角形,,,,,是等边三角形,,,,,在和中,,,,,点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,,,,,,∴GT//AB∵BG//AT四边形是平行四边形,,,∴ 在中, ∴ ,的最小值为,故答案为:.【点睛】本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2、(,0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB===,∴OP=,∴点P的坐标为(,0).故答案为:(,0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.3、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.4、【解析】【分析】根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.【详解】如图,∵将纸片沿AE折叠,使点B落在点F处,∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,∵AD∥BC,∴∠DAE=∠AED,∴∠DAE=∠AED,∴AD=DE=4,在Rt△ADF中,由勾股定理得:,∴EF=DE-DF=,∴BE=EF=,故答案为:.【点睛】本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.5、 50° 130° 50° 100° 80° 100° 80°【解析】略三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作..(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,∵EF为BD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD,在△EOD与△FOB中,,∴△EOD≌△FOB(ASA),∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..3、见解析【解析】【分析】根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE;∵E为BC中点,∴EB=EC,在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.4、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD为平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,∴AF=DE=4,DF=AE,∵,,,∴AB2+AF2=BF2,∴△BAF为直角三角形,∠BAF=90°,∴,∴AE=,∴.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.5、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)【解析】【分析】(1)①根据边长为(a+b)的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.【详解】解:(1)①大正方形的面积为;②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;可以得到等式:=;故答案为:①;②;=;(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;②锐角的总个数是n(n-1);可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);(3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22=2×(20002+222) =2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即×4×(4-3)=2;一个五边形共有5条对角线,即×5×(5-3)=5;一个六边形共有9条对角线,即×6×(6-3)=9;……,一个十七边形共有×17×(17-3)=119条对角线;一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.故答案为:119,n(n-3).【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共21页。
这是一份2020-2021学年第二十二章 四边形综合与测试优秀一课一练,共28页。试卷主要包含了如图,在中,DE平分,,则等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品精练,共27页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)