开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题

    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题第1页
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题第2页
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题,共29页。试卷主要包含了下列命题不正确的是,下列说法不正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )

    A.4 B.6 C.8 D.12
    2、下列多边形中,内角和与外角和相等的是(  )
    A. B. C. D.
    3、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )

    A.3cm B.4cm C.4.8cm D.5cm
    4、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积(  )

    A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变
    5、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    6、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.

    ①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.
    A.1 B.3 C.4 D.5
    7、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).

    A.112° B.108° C.104° D.98°
    8、下列说法不正确的是( )
    A.三角形的外角大于每一个与之不相邻的内角
    B.四边形的内角和与外角和相等
    C.等边三角形是轴对称图形,对称轴只有一条
    D.全等三角形的周长相等,面积也相等
    9、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
    B.满足的三个数,,是勾股数
    C.对角线相等的四边形各边中点连线所得四边形是矩形
    D.五边形的内角和为
    10、下面性质中,平行四边形不一定具备的是(  )
    A.对角互补 B.邻角互补
    C.对角相等 D.对角线互相平分
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.
    2、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.

    3、如图,,D为外一点,且交的延长线于E点,若,则_______.

    4、若一个正多边形的内角和与外角和的度数相等,则此正多边形对称轴条数为______.
    5、如图,在中,∠ACB=90°,DEBC,DE=AC,若AC=2, AD=DB=4,∠ADC=30°.以下四个结论:①四边形ACED是平行四边形;②∠ABE=;③AB=;④点F是AD中点,点G、H分别是线段BC、AB上的动点,则FG+GH的最小值为.正确的是_____.(填序号)

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    2、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.

    (1)求证:AE=CE;
    (2)猜想线段AE,EG和GF之间的数量关系,并证明.
    3、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.

    4、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.

    (1)求证:AF=CG;
    (2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?
    5、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
    【详解】
    解:四边形为菱形,
    ,,,

    ,
    ∴,
    ∴,

    故选:.
    【点睛】
    此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
    2、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    3、B
    【解析】
    【分析】
    由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
    ∴AC=8cm,
    ∵AE⊥BC,
    ∴∠AEC=90°,
    ∴OE=AC=4cm,
    故选:B.
    【点睛】
    本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
    4、D
    【解析】
    【分析】
    连接AE,根据,推出,由此得到答案.
    【详解】
    解:连接AE,
    ∵,
    ∴,
    故选:D.

    【点睛】
    此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.
    5、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    6、C
    【解析】
    【分析】
    证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.
    【详解】
    解:∵BH⊥AE,AF⊥BC,AE⊥EM,
    ∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
    ∴∠NBF=∠EAF=∠MEC,
    在△NBF和△EAF中,,
    ∴△NBF≌△EAF(AAS);
    ∴BF=AF,NF=EF,
    ∴∠ABC=45°,∠ENF=45°,
    ∴△NFE是等腰直角三角形,故③正确;
    ∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,
    ∴∠ANB=∠CEA,
    在△ANB和△CEA中,,
    ∴△ANB≌△CEA(SAS),故①正确;
    ∵AN=CE,NF=EF,
    ∴BF=AF=FC,
    又∵AF⊥BC,∠ABC=45°,
    ∴△ABC是等腰直角三角形,故②正确;
    在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,
    ∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,
    ∴∠ANE=∠BCD=135°,
    在△ANE和△ECM中,,
    ∴△ANE≌△ECM(ASA),故④正确;
    ∴CM=NE,
    又∵NF=NE=MC,
    ∴AF=MC+EC,
    ∴AD=BC=2AF=MC+2EC,故⑤错误.
    综上,①②③④正确,共4个,
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    7、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    8、C
    【解析】
    【分析】
    根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.
    【详解】
    ∵三角形的外角大于每一个与之不相邻的内角,正确,
    ∴A不符合题意;
    ∵四边形的内角和与外角和都是360°,
    ∴四边形的内角和与外角和相等,正确,
    ∴B不符合题意;
    ∵等边三角形是轴对称图形,对称轴有三条,
    ∴等边三角形是轴对称图形,对称轴只有一条,错误,
    ∴C符合题意;
    ∵全等三角形的周长相等,面积也相等,正确,
    ∴D不符合题意;
    故选C.
    【点睛】
    本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.
    9、D
    【解析】
    【分析】
    正确的命题是真命题,根据定义解答.
    【详解】
    解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
    B. 满足的三个正整数,,是勾股数,故该项不符合题意;
    C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
    D. 五边形的内角和为,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
    10、A
    【解析】
    【分析】
    直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
    【详解】
    解:A、平行四边形对角不一定互补,故符合题意;
    B、平行四边形邻角互补正确,故不符合题意;
    C、平行四边形对角相等正确,故不符合题意.
    D、平行四边形的对角线互相平分正确,故不符合题意;
    故选A.
    【点睛】
    此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
    二、填空题
    1、15
    【解析】
    【分析】
    由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    解:如图,D,E,F分别是△ABC的三边的中点,
    则DE=AC,DF=BC,EF=AB,
    ∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm.
    故答案为15.

    【点睛】
    本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.
    2、90
    【解析】
    【分析】
    根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.
    【详解】
    解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,
    ∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,

    延长C'B'交BC于点E,连接CC',如图,

    则四边形是矩形





    ∴是直角三角形

    故答案为:90
    【点睛】
    本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,
    3、2
    【解析】
    【分析】
    过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
    【详解】
    解:∵DE⊥AC,
    ∴∠E=∠C=90°,
    ∴,
    过点D作DM⊥CB于M,则∠M=90°=∠E,
    ∵AD=BD,
    ∴∠BAD=∠ABD,
    ∵AC=BC,
    ∴∠CAB=∠CBA,
    ∴∠DAE=∠DBM,
    ∴△ADE≌△BDM,
    ∴DM=DE=3,
    ∵∠E=∠C=∠M =90°,
    ∴四边形CEDM是矩形,
    ∴CE=DM=3,
    ∵AE=1,
    ∴BC=AC=2,
    故答案为:2.

    【点睛】
    此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
    4、4
    【解析】
    【分析】
    利用多边形的内角和与外角和公式列出方程,求得多边形的边,再利用正多边形的性质可得答案.
    【详解】
    解:设多边形的边数为n,
    根据题意(n-2)•180°=360°,
    解得n=4.
    所以正多边形为正方形,
    所以这个正多边形有4条对称轴,
    故答案为:4.
    【点睛】
    本题考查了多边形的内角和公式与多边形的外角和定理,解一元一次方程,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°,也考查的正多边形的对称轴的条数.
    5、①③④
    【解析】
    【分析】
    证明,结合DE=AC,可判定结论①;假设∠ABE=,在中,根据勾股定理得到,则假设不成立,可判断结论②;在中和中,利用勾股定理可求出AB的值,即可判断结论③;作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.通过勾股定理分别求得FG、GH的值,相加即可判断结论④.
    【详解】
    解:∵∠ACB=90°,DEBC,
    ∴∠CDE=∠ACB=90°,

    又∵DE=AC,
    ∴四边形ACED是平行四边形;故结论①正确.
    ∵AD=DB=4,∠ADC=30°,
    ∴∠ABC=∠DAB=,
    假设∠ABE=,则,
    ∴在中,,
    ∴,
    ∴假设不成立;故结论②错误.
    在中,,,
    ∴,

    ∴在中,,,
    ∴,
    即AB=;故结论③正确.
    如图所示,作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.

    连接AG,与BC相交于点M,
    ∵,∠ABC=,
    ∴,
    ∴,
    ∵四边形ACED是平行四边形,
    ∴,
    ∴,

    又∵点F是AD中点,点F与点F’关于BC对称,AD=4,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,
    又∵∠DAB=,
    ∴,
    ∴在中,,
    ∵点F是AD中点,点F与点F’关于BC对称,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴在中,,
    ∴,
    即FG+GH的最小值为;故结论④正确.
    故答案为:①③④.
    【点睛】
    本题考查勾股定理的应用.其中涉及平行线的判定,平行四边形的判定和性质,直角三角形中角所对的直角边等于斜边的一半,等腰直角三角形的判定和性质,“一定两动”求线段最小值等问题.综合性较强.
    三、解答题
    1、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    2、 (1)见解析
    (2)AE2+ GF2=EG2,证明见解析
    【解析】
    【分析】
    (1)根据“SAS”证明△ADE≌△CDE即可;
    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
    (1)
    证明:∵四边形ABCD是正方形,
    ∴AD=CD,∠ADE=∠CDE,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴AE=CE;
    (2)
    AE2+ GF2=EG2,理由:
    连接CG
    ∵△ADE≌△CDE,
    ∴∠1=∠2.
    ∵G为FH的中点,
    ∴CG=GF=GH=FH,
    ∴∠6=∠7.
    ∵∠5=∠6,
    ∴∠5=∠7.
    ∵∠1+∠5=90°,
    ∴∠2+∠7=90°,即∠ECG=90°,
    在Rt△CEG中,CE2+CG2=EG2,
    ∴AE2+ GF2=EG2.

    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
    3、150°
    【解析】
    【分析】
    先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
    【详解】
    解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
    ∴∠ADC=180°-∠ADE=55°,
    ∵∠A+∠B+∠C+∠ADE=360°,
    ∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
    【点睛】
    此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
    4、 (1)见解析
    (2)当AD=AB时,四边形BEDH是正方形
    【解析】
    【分析】
    (1)要证明AF=CG,只要证明△EAF≌△HCG即可;
    (2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.
    (1)
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,∠BAD=∠BCD,
    ∴∠AEF=∠CHG,
    ∵BE=2AB,DH=2CD,
    ∴BE=DH,
    ∴BE-AB=DH-DC,
    ∴AE=CH,
    ∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,
    ∴∠EAF=∠GCH,
    ∴△EAF≌△HCG(ASA),
    ∴AF=CG;
    (2)
    解:当AD=AB时,四边形BEDH是正方形;
    理由:∵BE∥DH,BE=DH,
    ∴四边形EBHD是平行四边形,
    ∵EH⊥BD,
    ∴四边形EBHD是菱形,
    ∴ED=EB=2AB,
    当AE2+DE2=AD2时,则∠BED=90°,
    ∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,
    ∴AD=AB,
    ∴当AD=AB时,四边形BEDH是正方形.

    【点睛】
    本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.
    5、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.

    相关试卷

    数学八年级下册第二十二章 四边形综合与测试精品复习练习题:

    这是一份数学八年级下册第二十二章 四边形综合与测试精品复习练习题,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共30页。试卷主要包含了下列说法正确的是,如图,菱形的对角线等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试精品复习练习题:

    这是一份2020-2021学年第二十二章 四边形综合与测试精品复习练习题,共33页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map