初中冀教版第二十二章 四边形综合与测试精品巩固练习
展开八年级数学下册第二十二章四边形章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面性质中,平行四边形不一定具备的是( )
A.对角互补 B.邻角互补
C.对角相等 D.对角线互相平分
2、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )
A.14 B.16 C.18 D.12
3、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为( )
A.20 B.24 C.30 D.48
4、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )
A.3 B.4 C.5 D.6
5、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )
A.12° B.24° C.39° D.45°
6、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
7、下列命题是真命题的有( )个.
①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.
A.1 B.2 C.3 D.4
8、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
9、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )
A.3 B.4 C.5 D.6
10、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )
A.线段的长逐渐增大 B.线段的长逐渐减少
C.线段的长不变 D.线段的长先增大后变小
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
2、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
3、已知一个多边形的内角和为,则这个多边形是________边形.
4、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.
5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知正方形ABCD,点E在边BC上,连接AE.
(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);
(2)探究:AE,DF的位置关系和数量关系,并说明理由.
2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
3、如图,在四边形ABCD中,AB=AD,AD//BC
(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
(2)连接DF,证明四边形ABFD为菱形.
4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.
(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为 .
5、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
(3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
【详解】
解:A、平行四边形对角不一定互补,故符合题意;
B、平行四边形邻角互补正确,故不符合题意;
C、平行四边形对角相等正确,故不符合题意.
D、平行四边形的对角线互相平分正确,故不符合题意;
故选A.
【点睛】
此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
2、B
【解析】
【分析】
根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
【详解】
解:在正方形ABCD中,,,,
∵F为DE的中点,O为BD的中点,
∴OF为的中位线且CF为斜边上的中线,
∴,
∴的周长为,
∵,
∴,
∵,
∴,
∴,
在中,,,,
∴,
∴的周长为,
故选:B.
【点睛】
题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
3、B
【解析】
【分析】
根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.
【详解】
解:如图,当BD=6时,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=3,
∵AB=5,
∴AO==4,
∴AC=8,
∴菱形的面积是:6×8÷2=24,
故选:C.
【点睛】
本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.
4、D
【解析】
【分析】
如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
【详解】
解:如图,过点作于点,连接,
由题意知
∴四边形为平行四边形
∵
∴四边形为矩形
∴
∵
∴
∵
∴
∴是等腰直角三角形
∴
①∵,
∴为等腰直角三角形
∴
,
∴
∴四边形是平行四边形
∴
∴
故①正确;
②∵
∴四边形为矩形
∴四边形的周长
故②正确;
③四边形为矩形
∵在和中
∵
∴
∴
∴
故③正确;
④∵
当最小时,最小
∴当时,即时,的最小值等于
故④正确;
⑤在和中,,
∴
故⑤正确;
⑥如图1,延长与交于点
∵在和中
∵
∴
∴
∵
∴
∴
故⑥正确;
综上,①②③④⑤⑥正确,
故选:.
【点睛】
本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
5、C
【解析】
【分析】
由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.
【详解】
解:折叠,
是矩形
故选:C.
【点睛】
本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.
6、A
【解析】
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
7、B
【解析】
【分析】
根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.
【详解】
解:①一组对边相等的四边形不一定是矩形,错误;
②两条对角线相等的平行四边形是矩形,错误;
③四条边都相等且对角线互相垂直的四边形是菱形,错误;
④四条边都相等的四边形是菱形,正确;
⑤一组邻边相等的矩形是正方形,正确.
故选:B.
【点睛】
此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.
8、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
9、A
【解析】
【分析】
根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.
【详解】
∵正方形ABCD,
∴AB=AD,∠BAC=DAC,
∵AE=AE,∴△ABE≌△ADE,
∴=5,同理△CBE≌△CDE,
∴,
∵,
∴CDE的面积为: =3,
故选A.
【点睛】
本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.
10、C
【解析】
【分析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
【详解】
解:连接.
、分别是、的中点,
为的中位线,
,为定值.
线段的长不改变.
故选:.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
二、填空题
1、或
【解析】
【分析】
分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.
【详解】
如图,当点E在BC下方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴,
当点E在BC上方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴.
故答案为:或.
【点睛】
本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.
2、6
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=60°,
∴边数n=360°÷60°=6.
故答案为:6.
【点睛】
此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
3、八##8
【解析】
【分析】
n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据n边形的内角和公式,得
(n-2)•180=1080,
解得n=8.
∴这个多边形的边数是8.
故答案为:八.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
4、 相等 相等 互相平分
【解析】
略
5、(0,-5)
【解析】
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
1、 (1)见解析;
(2),,见解析
【解析】
【分析】
(1)根据题意作出即可;
(2)证明即可得结论.
(1)
如图,即为所求.
(2)
,.
∵四边形ABCD是正方形,
∴,.
在和中,
∴(AAS),
∴.
∵,.
∴,即.
【点睛】
本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.
2、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
3、 (1)见解析
(2)见解析
【解析】
【分析】
(1)直接利用线段垂直平分线的作法得出答案;
(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
(1)
(1)如图:EF即为所求作
(2)
证明:如图,连接DF,
∵AD//BC,
∴∠ADE=∠EBF,
∵AF垂直平分BD,
∴BE=DE.
在△ADE和△FBE中,
,
∴△ADE≌△FBE(ASA),
∴AE=EF,
∴BD与AF互相垂直且平分,
∴四边形ABFD为菱形.
【点睛】
此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
4、 (1)见解析
(2)画图见解析,
【解析】
【分析】
(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
(2)作出边长分别为5,3的矩形ABDE即可.
(1)
解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;
(2)
解:如图,矩形BCDE即为所求.AE= .
故答案为:.
【点睛】
本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
5、 (1)①见解析;②见解析
(2)是,见解析
(3)
【解析】
【分析】
(1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
(2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
(3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
(1)
证明:①∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
在△ABD与△EDC中,
,
∴△ABD≌△EDC(ASA),
即△ABM≌△EMC;
②由①得△ABD≌△EDC,
∴AB=ED,
∵AB∥ED,
∴四边形ABDE是平行四边形;
(2)
成立.理由如下:
如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
∵AD∥EC,ML∥DC,
∴四边形MDCL为平行四边形,
∴ML=DC=BD,
∵ML∥DC,
∴∠FML=∠MBD,
∵AD∥EC,
∴∠BMD=∠MFL,∠AMB=∠EFM,
在△BMD和△MFL中
,
∴△BMD≌△MFL(AAS),
∴BM=MF ,
∵AB∥ME,
∴∠ABM=∠EMF,
在△ABM和△EMF中,
∴△ABM≌△EMF(ASA),
∴AB=EM,
∵AB∥EM,
∴四边形ABME是平行四边形;
(3)
解:过点D作DG∥BN交AC于点G,
∵M为AD的中点,DG∥MN,
∴MN=DG,
∵D为BC的中点,
∴DG=BN,
∴MN=BN,
∴,
由(2)知四边形ABME为平行四边形,
∴BM=AE,
∴.
【点睛】
本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题,共27页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共27页。试卷主要包含了六边形对角线的条数共有,下列命题错误的是等内容,欢迎下载使用。
数学第二十二章 四边形综合与测试精品课堂检测: 这是一份数学第二十二章 四边形综合与测试精品课堂检测,共29页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。