开学活动
搜索
    上传资料 赚现金

    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)

    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第1页
    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第2页
    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品精练

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品精练,共32页。
    八年级数学下册第二十二章四边形专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知锐角∠AOB,如图.

    (1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;
    (2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;
    (3)作射线OP交CD于点Q.
    根据以上作图过程及所作图形,下列结论中错误的是(   )
    A.四边形OCPD是菱形 B.CP=2QC
    C.∠AOP=∠BOP D.CD⊥OP
    2、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是(   )
    A.3 B. C. D.6
    3、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )

    A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
    4、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )

    A.1 B. C. D.
    5、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )

    A.3 B.4 C.5 D.6
    6、如图,五边形中,,CP,DP分别平分,,则(   )

    A.60° B.72° C.70° D.78°
    7、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).

    A.112° B.108° C.104° D.98°
    8、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )

    A.8 B.10 C.16 D.20
    9、若菱形的周长为8,高为2,则菱形的面积为( )
    A.2 B.4 C.8 D.16
    10、若n边形每个内角都为156°,那么n等于( )
    A.8 B.12 C.15 D.16
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平行四边形ABCD中,AC⊥BC,E为AB中点,若CE=3,则CD=____.

    2、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MN、PQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.

    3、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.

    4、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.

    5、如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.

    (1)直接写出点的坐标____________________;
    (2)求、两点的坐标.
    3、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.

    (1)求证:四边形是平行四边形:
    (2)若.
    ①当___________时,四边形是矩形;
    ②若四边形是菱形,则________.
    4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.

    (1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;
    (2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为   .
    5、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.

    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据作图信息可以判断出OP平分,由此可以逐一判断即可.
    【详解】
    解:由作图可知,平分
    ∴OP垂直平分线段CD
    ∴∠AOP=∠BOP,CD⊥OP
    故选项C,D正确;
    由作图可知,
    ∴是等边三角形,

    ∵OP垂直平分线段CD

    ∴CP=2QC
    故选项B正确,不符合题意;
    由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,
    故选:A
    【点睛】
    本题考查了基本作图,解题的关键是熟练掌握作图的依据.
    2、C
    【解析】
    【分析】
    画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.
    【详解】
    解:如下图所示:

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
    ∴OA=OB,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴OA=AB=2,
    ∴AC=2OA=4,
    ∴BC2=AC2-AB2=36-9=27,
    ∴BC=.
    故选:D.
    【点睛】
    本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    3、A
    【解析】
    【分析】
    根据题意,作交的延长线于,证明是的角平分线即可解决问题.
    【详解】
    解:作交的延长线于,

    ∵四边形 是正方形,
    ∴,

    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵四边形是平行四边形,
    ∴,,
    ∵, ,
    ∴,
    ∵,.
    ∴,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴是的角平分线,
    ∴点的运动轨迹是的角平分线,
    ∵,
    由图可知,点P从点D开始运动,所以一直减小,
    故选:A .
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    4、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    5、D
    【解析】
    【分析】
    如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
    【详解】
    解:如图,过点作于点,连接,

    由题意知
    ∴四边形为平行四边形

    ∴四边形为矩形





    ∴是等腰直角三角形

    ①∵,
    ∴为等腰直角三角形



    ∴四边形是平行四边形


    故①正确;
    ②∵
    ∴四边形为矩形
    ∴四边形的周长
    故②正确;
    ③四边形为矩形

    ∵在和中




    故③正确;
    ④∵
    当最小时,最小
    ∴当时,即时,的最小值等于
    故④正确;
    ⑤在和中,,

    故⑤正确;
    ⑥如图1,延长与交于点

    ∵在和中







    故⑥正确;
    综上,①②③④⑤⑥正确,
    故选:.
    【点睛】
    本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
    6、C
    【解析】
    【分析】
    根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
    【详解】
    解:五边形的内角和等于,,

    、的平分线在五边形内相交于点,


    故选:C.
    【点睛】
    本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
    7、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    8、C
    【解析】
    【分析】
    根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB=CD,AD=BC,
    ∵OE⊥AC,
    ∴OE是线段AC的垂直平分线,
    ∴AE=CE,
    ∵△CDE的周长为8,
    ∴CE+DE+CD=8,即AD+CD =8,
    ∴平行四边形ABCD的周长为2(AD+CD)=16.
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
    9、B
    【解析】
    【分析】
    根据周长求出边长,利用菱形的面积公式即可求解.
    【详解】
    ∵菱形的周长为8,
    ∴边长=2,
    ∴菱形的面积=2×2=4,
    故选:B.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
    10、C
    【解析】
    【分析】
    首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
    【详解】
    解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
    则n=360°÷24°=15.
    故选:C.
    【点睛】
    本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
    二、填空题
    1、6
    【解析】
    【分析】
    由AC⊥BC,E为AB中点,若CE=3,根据直角三角形斜边的中线等于斜边的一半,可求得AB的长,然后由平行四边形的性质,求得答案.
    【详解】
    解:∵AC⊥BC,E为AB中点,
    ∴AB=2CE=2×3=6,
    ∵四边形ABCD是平行四边形,
    ∴CD=AB=6.
    故答案为:6.
    【点睛】
    此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的对边相等.
    2、12
    【解析】
    【分析】
    证出EH是△ABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.构建方程组求出x,y即可解决问题.
    【详解】
    解:连接BD,如图所示:

    ∵四边形ABCD是菱形,
    ∴AB=AD,AC与BD垂直平分,
    ∵E是AB的中点,H是AD的中点,
    ∴AE=AH,EH是△ABD的中位线,
    ∴EN=HN,BD=2EH=4HN,
    由题意可以设AN=PC=x,EN=HN=PF=PG=y.
    则有,
    解得:,
    ∴AN=2,HN=3,
    ∴BD=4HN=12;
    故答案为:12.
    【点睛】
    本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.
    3、3
    【解析】
    【分析】
    根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,,
    ∵,
    ∴,
    ∵,BE平分,
    ∴,,
    ∴,
    ∴,
    故答案为:3.
    【点睛】
    题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.
    4、48
    【解析】
    【分析】
    利用长方形的面积减去石子路的面积,即可求解.
    【详解】
    解:根据题意得:种植鲜花的面积为 .
    故答案为:48
    【点睛】
    本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.
    5、5
    【解析】
    【分析】
    依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;
    【详解】
    ∵ D,F分别为AB,AC的中点,
    ∴DF是△ABC的中位线,
    ∴BC=2DF=10,
    在Rt△ABC中,E为BC的中点,

    故答案为:5.
    【点睛】
    本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;
    三、解答题
    1、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    2、 (1)(10,8)
    (2)D(0,5),E(4,8)
    【解析】
    【分析】
    (1)根据,,可得点的坐标;
    (2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
    (1)
    解:∵,,
    ∴点的坐标(10,8),
    故答案为:(10,8);
    (2)
    解:依题意可知,折痕AD是四边形OAED的对称轴,
    在Rt△ABE中,AE=AO=10,AB=OC=8,
    由勾股定理,得BE= =6,
    CE=BC-BE=10-6=4,E(4,8).
    在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
    又∵DE=OD,CD=8-OD,
    (8-OD)2+42=OD2,
    解得OD=5,D(0,5).
    所以D(0,5),E(4,8);
    【点睛】
    本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
    3、 (1)见解析;
    (2)①3;②
    【解析】
    【分析】
    (1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;
    (2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;
    ②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.
    (1)
    证明:∵点D、E分别是边BC、AC的中点,
    ∴DEAB,BD=CD,
    ∵,
    ∴四边形ABDF是平行四边形,
    ∴AF=BD=CD,
    ∴四边形是平行四边形;
    (2)
    解:①∵点D、E分别是边BC、AC的中点,
    ∴DE=AB,
    ∵四边形是平行四边形,
    ∴DF=2DE=AB=3,
    ∵四边形是矩形,
    ∴AC=DF=3,
    故答案为:3;
    ②∵四边形是菱形,
    ∴DF⊥AC,
    ∵DEAB,
    ∴AB⊥AC,
    ∴AD=BC=2.5,
    ∴AE=EC=2,


    ∴,
    故答案为:.
    【点睛】
    此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
    4、 (1)见解析
    (2)画图见解析,
    【解析】
    【分析】
    (1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;
    (2)作出边长分别为5,3的矩形ABDE即可.
    (1)
    解:如图,AB==BC,∠ABC>90°,所以△ABC即为所求;

    (2)
    解:如图,矩形BCDE即为所求.AE= .
    故答案为:.
    【点睛】
    本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    5、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;

    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;

    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;

    (3)
    解:如图3-1所示,连接AF,
    ∴,

    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.

    相关试卷

    初中冀教版第二十二章 四边形综合与测试精品习题:

    这是一份初中冀教版第二十二章 四边形综合与测试精品习题,共28页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课时练习,共27页。试卷主要包含了如图,在正方形ABCD中,点E,已知,如图,在中,DE平分,,则等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试,共26页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map